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ABSTRACT

I present a physical model to calculate protein-protein interactions. General formu-

lations to calculate the electrostatic and the van der Waals free energies are brought

by the boundary element method of solving linearized Poission-Boltzmann equation in

an electrolyte solution, then further expanded to the application of the Fast Multipole

Method(FMM). We built an efficient solver to investigate how the mutations on the

active site of the protein-protein interface affect changes in binding affinities of protein

complexes. Calculated results in addition to the structural analysis help us to understand

the protein-protein interaction energy and provide a model to the important applica-

tions such as protein crystallization. The osmotic second virial coefficient B2 is directly

related to the solubility of protein molecule in electrolyte solution and determined by

molecular interactions involving both solvent and solute molecules. Calculations of in-

teraction energies account for the electrostatic and the van der Waals interactions with

the structural anisotropic properties of protein molecules. The orientation dependence of

interaction energies between two proteins is determined by the crystal space operations

and small number of protein-protein pair configurations according to the anisotropic

patch model are required to calculate B2. With the extended FMMs, double-tree and

single-tree algorithms, the boundary element formulations of interaction energies can be

applied with low computational cost to the proteins. B2 Calculations of Bovine Pan-

creatic Trypsin Inhibitor are firstly performed to validate our model and the results of

lysozyme protein under different salts, concentrations, pH and temperatures are corre-

lated to the experimental B2. The reduced number of pair interaction energies between
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two proteins are interpolated to predict all pair interaction energies in the patch model

as a precursor of the protein phase diagram calculation.
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CHAPTER 1. Introduction

1.1 Background

To understand the structure of a protein by either X-ray crystallography or NMR

the production of diffraction quality crystals is important. According to Chayen and

Saridakis (Chayen and Saridakis, 2008) and Table 1.1 even though the purified proteins

are successfully obtained, only 18% of them can be crystallized with suitable quality.

Thus this crystallization process is still a bottleneck for all steps in protein structure

studies. In order to achieve the successful rate of the protein crystallization, we need

to screen the optimal solution condition from the traditional extensive trial-and-error

screening. The choice of pH, buffer, temperature, salt concentration and precipitating

agents should be guided to narrow down the large set of possibilities.

The correlation between slightly negative second virial coefficient of a protein solution

and its successful crystallization condition is observed by George and Wilson (George

et al., 1997). There is also a correlation between the solubility of a protein in an elec-

trolyte solution and the osmotic second virial coefficient B2 of the solution (Veesler et al.,

1996; Boistelle et al., 1997). Observing the second virial coefficients with various solution

conditions can narrow down the large set of parameters to guide the protein crystalliza-

tion to the optimal values. The calculation of the osmotic second virial coefficient of

a protein in an electrolyte solution requires computation of the pair interaction energy

between two protein molecules. The computed pair interaction energy is also useful to

calculate the phase diagram of a protein as a first step of this study.
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Table 1.1 Statistics summary report of structural genomics projects. The
numbers of targets and normalized percentage to Cloned step
show the result of structural genomics projects until April 19
2010. The TargetDB website(targetdb.pdb.org) updates the cur-
rent information providing the production of structures.

Step Number of targets % Normalized
Cloned 176,710 100
Expressed 123,905 70.1
Soluble 47,572 26.9
Purified 43,609 24.7
Diffracting Crystal 7,708 4.4
Structure Defined 7,265 4.2
In PDB 7,569 4.3

Our early studies (Song, 2003; Song and Zhao, 2004) of calculations of the elec-

trostatic interaction energy and the val der Waals interacntion energy based on the

conventional Boundary Element Method(BEM) require too much computational cost,

both memory and time consuming. Only a small protein molecule can be used because

of this cost problem. To avoid the high cost demand of our solver and to apply it to

the various protein interaction system, we implement the Fast Multipole Method(FMM)

algorithm to our BEM solution. With the application of FMM, we are able to build a

model to compute the binding affinities of large protein complexes and the second virial

coefficients of protein molecules with various solution conditions. Finally, this method

is applied to the study of predicting a phase diagram of a protein.

1.2 Organization of Thesis

The organization of this thesis follows:

Chapter 2

In chapter 2, we build a residual model to calculate the electrostatic and the van der

Waals contribution to the binding affinity of a protein complex. To avoid its high
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computing cost depending the number of discretized surface elements on a protein

surface, the Fast Multipole Method(FMM) is applied to the Boundary Element

Method(BEM) to calculate the interaction energy of a protein in an electrolyte

solution. The changes in binding affinities between the wild-type complex and the

P1 mutant complexes made by Swiss PDB viewer and molecular dynamics simula-

tion are compared to the experimental data. For calculations, Bovine pancreatic

trypsin inhibitor(BPTI)-trypsin, barnase-barstar and Streptomyces griseus pro-

tease B(SGPB)-turkey ovomucoid third domain(OMTKY3) complexes are used.

Chapter 3

In chapter 3, we expand the residual model of a single protein to the anisotropic

patch model to compute the effective interaction energy between two protein

molecules whose orientations are defined by two nearest patches on the center-

to-center displacement. Two extended FMM algorithms, double-tree FMM and

single-tree FMM, are applied to calculate the electrostatic and van der Waals in-

teraction energies between two proteins. With this model, the second virial coeffi-

cients of a BPTI protein in sodium chloride solution are first calculated to validate

our anisotropic patch model. The second virial coefficients of a lysozyme protein

in various salt, concentration, pH and temperature are calculated and compared

to the experiments.

Chapter 4

In chapter 4, the anisotropic patch model to calculate the interaction energies

between two proteins is used to compute the pair potential as a starting point of

predicting the phase diagram of a protein. The pair interaction potentials between

many orientations of two proteins defined by the surface patches are interpolated

from the small number of calculated pair interactions.

Chapter 5



www.manaraa.com

4

In chapter 5, we describe a general idea of how the FMM algorithm can accelerate

to solve a system of linear equations and reduce the computational cost with-

out storing matrix elements produced by BEM. Applications of the FMM to our

systems of linear equations are described with step-by-step procedures and the

comprehensive study of reduced cost is proven.

Chapter 6

In chapter 6, we state general conclusions.

Appendix

In the appendix, the analytic expression of the electrostatic interaction free energy

based on the Derjaguin-Landau-Verwey-Overbeek(DLVO) theory with two charged

identical spheres in electrolyte solution is derived to validate our solution of the

electrostatic interaction energy calculation between two proteins.
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CHAPTER 2. Calculations of the Binding Affinities of

Protein-Protein Complexes with the Fast Multipole Method

2.1 Abstract

In this paper, we present a simple physical model to calculate binding free energies

of protein-protein complexes. General formulations to calculate the electrostatic free en-

ergy and the van der Waals free energy are brought by the boundary element method of

solving a linearized Poission-Boltzmann equation in an electrolyte solution, then further

expanded to the application of the fast multipole method to reduce the computational

cost. The residual model with the fast multipole method allows us to build an efficient

solver to investigate how the mutations on the active site of the protein-protein interface

affect changes in binding affinities of protein complexes. The calculated results in addi-

tion to the structural analysis help us to understand the dominant contribution to the

protein-protein interaction free energy and provide a model to important applications

such as protein crystallization.

2.2 Introduction

The atomic resolved structure of proteins from X-ray crystallography relies on the

production of diffraction quality crystals. Recent extensive studies from structural ge-

nomic project clearly indicates that even though purified proteins can be successfully

obtained, only about 16% of them are crystallized with suitable quality for diffrac-
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tion (TargetDB, 2010). Thus the crystallization process is still the bottleneck for pro-

tein structure determination using crystallography. Currently protein crystallization

conditions are screened from traditional trial-and-error procedure. Namely, the optimal

condition is obtained from extensive searches of a large parameter space of protein solu-

tions such as pH, buffer, temperature, salt concentration and precipitating agent. Even

with remarkable progress of automation the poor successful rate of obtaining protein

single crystals is in no small part due to the lack of understanding of the crystallization

process (Service, 2005). For example, recent studies using time-controlled micro-fluidic

seeding heavily rely on knowledge of solution conditions during the nucleation stage and

crystal growth stage (Gerdts et al., 2006). In other recent high-throughput experimen-

tal studies using micro-fluidics, it is clearly demonstrated that knowledge of the phase

behavior of a protein allows one to create a rational screen that increases the success

rate of crystallization of challenging proteins (Anderson et al., 2006). It is therefore

useful to understand what kind of solution conditions might lead toward the optimal

crystallization conditions and why.

As a first step toward a reliable and practical theory of protein crystallization, a real-

istic model of protein-protein interaction needs to be developed. In general, there are two

types of protein-protein interactions in nature. One type of interactions is responsible for

the protein-protein recognition to perform specific biological functions. In this case there

are complimentary regions on both proteins to recognize each other and hydrophobicity

is the dominating factor (Elcock et al., 2001). On the other hand, the protein-protein

interaction in the protein crystallization does not necessarily involve complimentary re-

gions to establish protein-protein contacts. For example, we have analyzed the protein

contacts for five lysozyme protein crystals from the protein data bank under five differ-

ent crystallization conditions (Song, 2002b). What we found is that the protein contacts

can be formed from different parts of lysozyme surface residues depending upon the

solution conditions. Similar conclusions can be drawn from other studies as well. For
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example, Crosio et al. found that pancreatic ribonuclease uses nearly the entire protein

surface residues to establish crystal-packing contacts under various crystallization condi-

tions (Crosio et al., 1992). An extensive analysis on 78 protein crystals indicates that the

amino acid composition involved in the protein contacts is indistinguishable from that

of the protein surface accessible to the solvent (Carugo and Argos, 1997). These studies

also suggest that crystal-packing contacts formed are sensitive to the solution conditions

in contrast to the type of protein-protein interaction where hydrophobic residues are

favored (Janin and Rodier, 1995; Dasgupta et al., 1997). Therefore a universal model to

capture the effective interaction between protein molecules in solutions can be developed

based upon the Derjaguin-Landau-Verwey-Overbeek (DLVO) picture given the protein-

protein interaction at short range can be accounted for appropriately since the DLVO

picture will fail when two protein molecules are separated by several solvent molecular

layers.

The key feature of such a model is that it should be based on the generic properties

of twenty amino acids in nature and experimentally accessible properties of electrolyte

solutions and crystallization agents, and is therefore portable to all of the protein-protein

interactions in aqueous solutions. Our recent studies (Song, 2003; Song and Zhao, 2004)

are such efforts toward this goal.

In this model, each residue of a protein is represented by a sphere located at the

geometric center of the residue determined by its native or approximate structure. The

diameter of the sphere is determined by the molecular volume of the residue in solution

environment (Zamyatnin, 1984). The molecular surface of our model protein is defined

as the Richard-Connolly surface spanned by the union of these residue spheres using

MSMS program (Sanner, 1996). Each residue carries a permanent dipole moment lo-

cated at the center of its sphere and the direction of the dipole is given by the amino

acid type from a protein’s native structure. If a residue is charged, the amount of charge

is given by the Henderson-Hasselbalch equation using the generic pKa values of residues,
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thus the local environmental effects on pKa values are neglected. For each residue there

is also a polarizable dipole at the center of the sphere, whose nuclear polarizability had

been determined from our recent work (Song, 2002a) and the electronic polarizability is

estimated from optical dielectric constants augmented with quantum chemistry calcula-

tions (Millefiori et al., 2008). There are three kinds of interactions in this model: the

electrostatic interaction due to electric double layer effect, the van der Waals attraction

due to the polarizable dipoles and a short range correction term to account for the short

range interactions such as the desolvation energy, hydrophobic interaction and so on. In

this report, we consider the electrostatic interactions which give the most contribution

to the protein-protein interaction (Dong and Zhou, 2006; Brock et al., 2007), and the

van der Waals interactions, which are the major contributors to the binding affinity

calculations.

The electrostatic problem in the electrostatic interaction and the van der Waals in-

teraction is solved using the Poisson-Boltzmann equation where the realistic shape of

protein molecules are considered. The boundary element method (BEM) in combina-

tion with the fast multipole method (Greengard, 1988; Greengard and Rokhlin, 1997)

is implemented to circumvent the extensive memory requirements similar to the recent

work (Lu et al., 2007). In order to test the validity of our model, the binding affinities of

several protein-protein complexes are calculated using our model and direct comparisons

are made against experimental measurements. Reasonable agreements from these com-

parisons provide the first concrete evidence that our model can be used as a universal

model for studies of non-specific protein-protein interactions in aqueous solutions.
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2.3 Theoretical developments

2.3.1 The Statistical Thermodynamics of Binding Affinities

To set up the computational framework for calculating the binding affinities, the

statistical thermodynamic analysis of “double-decoupling” method from Gilson and his

coworkers (Gilson et al., 1997) is used. This approach is based on the change in the

free energy of protein-protein binding when one protein and the other react and, then a

single complex is formed. The final result for the binding affinity is given as,

∆G◦ = ∆G◦sol (AB)−∆G◦sol (A)−∆G◦sol (B)

, (2.1)

where ∆G◦sol is the free energy change when a molecule is introduced into a solution from

vacuum. In this report, the binding free energy calculations are for single mutations at

the binding site, thus free energy change due to translational, rotational and vibrational

contributions of the proteins upon binding remains relatively constant. In our model

the free energy change is the sum of the electrostatic solvation energy and the van der

Waals solvation energy of the molecule. For protein A,

∆G◦sol (A) = ∆Gelec
sol (A) + ∆Gvdw

sol (A) . (2.2)

2.3.2 The electrostatic solvation energy calculation

The electrostatic binding free energy between the protein A and B is defined as,

∆Gbinding
elec = ∆Gelec (AB)

− ∆Gelec (A)−∆Gelec (B) . (2.3)

The electrostatic interaction is estimated from the Poisson-Boltmann(PB) equation. To

solve the PB equation, we use the boundary element method based on the integral equa-
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Figure 2.1 Schematic illustration showing the electrostatic formulation of
single protein.

∑
is the molecular surface of a protein, n is

outward unit normal, ε1 and ε2 are dielectric constant inside the
cavity and outside solvent respectively. κ is the inverse Debye
screening length for the electrolyte solution. ri stands for residue
center and charge qi and dipole µi are located on each residue
center.

tion formulation of the linearized PB equation for a single protein (Yoon and Lenhoff,

1990; Juffer et al., 1991).

Consider the molecular surface
∑

which covers a protein molecule. There are N

charges qi and dipoles ~µi at position ri enclosed by the surface
∑

. Inside this dielec-

tric cavity the dielectric constant is ε1 and the dielectric constant of the solution is

ε2(see Figure 2.1). The inverse Debye screening length κ is given by the solution’s ionic

strength. The integral equations for the potential ϕ(r) and its gradient ∂ϕ(r)/∂n are

given by the following integral equations (Song, 2003; Juffer et al., 1991),
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1

2

(
1 +

ε2

ε1

)
ϕ(r0) +

∫∫
∑ L1(r, r0)ϕ(r)dr

+

∫∫
∑ L2(r, r0)

∂ϕ(r)

∂n
dr

=
N∑
i=1

{qiF (ri, r0) + ~µi · ∇F (ri, r0)} /ε1, (2.4)

1

2

(
1 +

ε1

ε2

)
∂ϕ(r0)

∂n
+

∫∫
∑ L3(r, r0)ϕ(r)dr

+

∫∫
∑ L4(r, r0)

∂ϕ(r)

∂n
dr

=
N∑
i=1

{
qi
∂F

∂n0

(ri, r0) + ~µi · ∇
∂F

∂n0

(ri, r0)

}
/ε1, (2.5)

where

L1(r, r0) = ∂F
∂n

(r, r0)− ε2
ε1
∂P
∂n

(r, r0), (2.6)

L2(r, r0) = P (r, r0)− F (r, r0), (2.7)

L3(r, r0) = ∂2F
∂n0∂n

(r, r0)− ∂2P
∂n0∂n

(r, r0), (2.8)

L4(r, r0) = − ∂F
∂n0

(r, r0) + ∂P
∂n0

(r, r0) ε1
ε2

(2.9)

and

F (r, r0) = 1
4π|r−r0| , (2.10)

P (r, r0) = e−κ|r−r0|

4π|r−r0| . (2.11)

Although the traditional boundary element method such as Atkinson and his cowork-

ers’ (Atkinson and Han, 2009) can be used to solve above integral equations, the memory

requirement is too costly even on the newest computers using either a direct linear system

solver or iterative solver, such as Generalized minimal residual method (GMRES) (Bar-

rett et al., 1994) for a moderate size protein. In the current work the fast multipole

method is implemented and the details will be outlined in chapter 5. Once the above
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integral equations are solved the potential inside the dielectric cavity is,

ϕ(r0) = −
∫∫

∑ L1(r, r0)ϕ(r)dr

−
∫∫

∑ L2(r, r0)
∂ϕ(r)

∂n
dr, (2.12)

∇0ϕ(r0) = −
∫∫

∑∇0L1(r, r0)ϕ(r)dr

−
∫∫

∑∇0L2(r, r0)
∂ϕ(r)

∂n
dr. (2.13)

Finally, the electrostatic solvation free energy is given by,

∆Gele =
N∑
i=1

{
qi
ε1
ϕ(ri) +

1

ε1
~µi · ∇ϕ(ri)

}
. (2.14)

2.3.3 The van der Waals energy contribution

The van der Waals binding free energy between proteins A and B is defined as in

Eq. (2.15),

∆Gbinding
vdw = ∆Gvdw (AB)

− ∆Gvdw (A)−∆Gvdw (B) . (2.15)

Song and Zhao had developed a theory to calculate the van der Waals interaction between

protein molecules in an electrolyte solution using the following effective action in Fourier

space of the polarizable dipoles (Song and Zhao, 2004),

S [mr,n] = −β
2

∑
r

n=∞∑
n=−∞

1

αr,n

mr,n ·mr,−n

+
β

2

∑
r6=r′

n=∞∑
n=−∞

1

αr,n

mr,n · T (r− r′) ·mr,−n

+
β

2

∑
r,r′

n=∞∑
n=−∞

1

αr,n

mr,n ·Rn(r− r′) ·mr,−n, (2.16)

where αr,n is the frequency-dependent polarizability of a residue located at position r.

T (r − r′) is the dipole-dipole interaction tensor between dipoles at r and r′, where the
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retardation is neglected. Rn(r−r′) is the reaction field tensor at frequency ωn = 2πn/β~,

which captures the effect of surrounding dielectric medium. If the electrolyte solvent

is treated by the Debye-Hückel theory, this reaction field tensor can be calculated by

solving the PB equation with dielectric function ε(iωn) and the Debye screening length

κ (Song and Zhao, 2004). The quantum partition function from this effective action of

the system is

Q(A) =
∏
n

[
2π

βdet [An(A)]

]1/2

, (2.17)

where A represents the protein A, and An’s matrix element is given by,

An(r, r′) =
1

αr,n

δr,r′ − T (r− r′)−Rn(r− r′). (2.18)

The symbol “det” represents the determinant of the matrix. Finally the van der Waals

binding free energy is given by (Song and Zhao, 2004),

∆Gbinding
vdw =

1

2
kBT

n=∞∑
n=−∞

[
ln {det [An (AB)]}

− ln {det [An (A)]} − ln {det [An (B)]}
]
. (2.19)

In order to evaluate the van der Waals interaction in our model, the reaction field

matrix Rn(r − r′) has to be calculated with the properties of the proteins and of the

solution. The boundary element formulation which is used to evaluate the electrostatic

free energy can also be used to calculate the reaction field matrix. Again consider

the molecular surface
∑

spanned by a protein molecule (Figure 2.2). There are N

polarizable dipoles mr at position r enclosed by the surface
∑

. Inside this dielectric

cavity the dielectric constant is one and the dielectric function of the solution is ε(iωn)

at the Matsubara frequency ωn. The inverse Debye screening length κ is given by the

solution’s ionic strength. If we recognize that in order to calculate the potential at the

molecular surface a dipole m at position r0 can be described by an effective charge

density ρeff(r) = −m∇δ(r − r0) (Jackson, 1999), the reaction field matrix involving

residues ri and rj can be written as,
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n



mr

,( )  

Figure 2.2 Schematic illustration showing the van der Waals energy for-
mulation of a single protein.

∑
is the molecular surface of a

protein, n is outward unit normal, ε is dielectric constant out-
side solvent. mr stands for the polarizable dipole located on the
residue center.

Rn(ri, rj) =

∫∫
∑ [∇iF (ri, rj) −∇iP (ri, rj)]

∂ϕ

∂n
(rj, r)dr

+

∫∫
∑
[
−∇i

∂F

∂nj
F (ri, rj) +∇i

∂P

∂nj
(ri, rj)ε

]
ϕ(rj, r)dr, (2.20)

where F and P are defined in Eq.(2.10) and Eq. (2.11). ϕ and ∂ϕ/∂n can be obtained

by solving the following integral equations at each frequency ωn (Song and Zhao, 2004;

Juffer et al., 1991),

1

2
(1 + ε(iωn))ϕ(ri, r0) +

∫∫
∑ L1(r, r0)ϕ(ri, r)dr

+

∫∫
∑ L2(r, r0)

∂ϕ

∂n
(ri, r)dr

= ∇iF (ri, r0), (2.21)
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1

2

(
1 +

1

ε(iωn)

)
∂ϕ

∂n
(ri, r0) +

∫∫
∑ L3(r, r0)ϕ(ri, r)dr

+

∫∫
∑ L4(r, r0)

∂ϕ

∂n
(ri, r)dr

= ∇i
∂F

∂n0

(ri, r0), (2.22)

where L1, L2, L3, and L4 are defined in the electrostatic free energy calculation in Eqs.

(2.6), (2.7), (2.8) and (2.9). To evaluate the van der Waals binding free energy in Eq.

(2.19), the reaction field matrix is built using the dielectric function ε(iωn) for each

frequency ωn. And the polarizability of a residue in a protein is given by,

αn = α(iωn) =
αnu

1 + ωn/ωrot
+

αel

1 + (ωn/ωI)
2 , (2.23)

where αnu is the static nuclear polarizability of a residue (Song, 2002a) and ωrot is a

characteristic frequency of nuclear collective motion from a generalization of the De-

bye model. αel is the static electronic polarizability of a residue and ωI is the ion-

ization frequency of a residue as in the Drude oscillator model of electronic polariz-

abilities. ωrot = 20cm−1 for this calculation which is typical rotational frequency of

molecules (Israelachvili, 1985). Other properties are listed in Table 2.1 based on the

calculated result (Millefiori et al., 2008). An accurate parametrization of the dielectric

function varε(iω) of water based on the experimental data is taken from Parsegian’s

work (Parsegian, 1975).

2.3.4 Implementation of the Fast Multipole Method to the Boundary Ele-

ment Method

The major drawback of the traditional boundary element method (BEM) is the order

O(N2) dependence of the matrix size on the number of surface elements N . The large

size of a matrix not only requires larger usage of memory but also takes longer time

to solve the corresponding linear system. An efficient algorithm developed by Green-

gard and Rokhlin, the fast multipole method (FMM), is implemented to avoid storing
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Table 2.1 Intrinsic nuclear polaizability(αnu), electronic polarizability(αel)

and ionization frequency of amino acids in unit of Å
3

(Millefiori
et al., 2008).

Amino acid αnu αel ωI
Ala 2.09 8.25 75650
Arg 4.38 18.01 63880
Asn 5.05 11.66 71740
Asp 3.08 10.86 75250
Cys 2.18 11.40 70900
Gln 4.40 13.54 70450
Glu 3.10 12.79 73400
Gly 2.01 6.44 77110
His 2.53 15.14 65730
Ile 1.98 13.67 73710
Leu 1.90 13.80 74320
Lys 2.96 15.39 67510
Met 2.07 15.33 66380
Phe 2.01 18.33 67550
Pro 1.47 11.07 71340
Ser 3.52 8.94 74890
Thr 4.19 10.72 73640
Trp 3.06 23.35 58430
Tyr 3.50 19.25 63070
Val 1.99 11.82 74160
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matrix elements and speed up matrix-vector multiplications which is the most time con-

suming step in solving linear equations (Greengard and Rokhlin, 1997). To apply the

FMM algorithm to the BEM, surface elements on a protein surface are distributed to

different 3D rectangular boxes at different levels based on a hierarchical oct-tree, and a

divide-conquer strategy is applied to the far-field interactions at each level in the tree

structure (see Figure 5.4 in chapter 5). The fundamental observation in FMM is that

the multipole moment expansion of the far field interaction, which is roughly O(N2) in

the direct BEM, can be approximated by the low number of summation depending on

the designated accuracy to lower computational cost. The integral elements of matrices

in the electrostatic and the van der Waals interaction formulations are described by two

different interactions, Columbic interaction and Debye-Hückel (screened Columbic) in-

teraction. The detail formulations of the fast multipole method is described in chapter

5.

2.3.5 Preparation of protein complex structures

Three protein complex systems, where extensive experimental data are available,

are used to test our protein-protein interaction model. The Bovine Pancreatic Trypsin

Inhibitor (BPTI)-trypsin system where the crucial P1 residue had been mutated to

various residues, the binding affinities and mutated protein complex structures have

been extensively documented (Krowarsch et al., 1999). The other two systems are well

studied barnase-barstar complex (Schreiber et al., 1997) and the Streptomyces griseus

proteinase B (SGPB)-turkey ovomucoid third domain complex (OMTKY3) (Lu et al.,

1997).

In our preparations for the mutant structure without the experimental one, the

Swiss-PDB Viewer (Guex and Peitsch, 1997) is first used to make a single mutant on

the binding site and select the best rotamer based on its lowest score according to the
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formula.

score = (4× NbClash with backbone N, Cα and C atoms)

+ (3× NbClash with backbone O atoms)

+ (2× NbClash with side-chain atoms)

− NbHbonds− 4× NbSSbonds,

where the “Nb” is the abbreviation of “number”. Then molecular dynamics (MD)

simulations using CHARMM force field (Brooks et al., 1983) are performed to determine

the final mutant structure used in our calculations. In order to test the validity of the

simulated mutant structures as compared to the experimental mutant structures, 10

P1 mutants of BPTI-trypsin complexes based on the wild-type PDB (PDB ID=3BTK)

are used to validate our procedure for the simulated mutant structures. For the BPTI-

trypsin system, the crystal structures of complexes between Bovine β−trypsin and ten

P1 variants of BPTI (Helland et al., 1999) are known experimentally (PDB code: 3BTD,

3BTE, 3BTF, 3BTG, 3BTH, 3BTK, 3BTM, 3BTQ, 3BTT, 3BTW). The RMSD studies

between simulated structures and experimental structures are within 1.3Å (the average

value from all 10 mutants). Figure 2.3 shows the correlation of calculated binding

affinities between experimental PDB structures and simulated PDB structures. Thus,

the simple mutant PDB structure from Swiss PDB viewer mutation followed by MD

simulations can be used as mutant structure to calculate the binding free energy of

mutant complexes. This method is used to generate all mutant structures for barnase-

barstar complexes and SGPB-OMTKY3 complexes for calculations.

For the barnase-barstar complex system, the crystal structure of the pseudo wild-

type barnase-barstar complex (Vaughan et al., 1999) (PDB code=1B27) is used as a

template of the mutant complexes. This complex contains three sets of barnase-barstar

complex, chain A is used for barnase and its binding site mutations and chain D is used

for modeling the wild-type barstar. In order to make a wild-type protein, A40 and A82
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Figure 2.3 The experimental PDB versus MD simulated PDB comparison
for the electrostatic binding free energy of the P1 variants of
BPTI-trypsin complexes. The linear fit correlation coefficient is
0.989.

in barstar are mutated to Cys. As the experimental results of barnase-barstar binding

measurements indicate that the deletion of N-terminal Met residue in barstar, thus in

our calculation the N-terminal Met is deleted in the template protein structure. So the

final template has 110 barnase residues, 89 barstar residues. To make a comparison with

experimental binding affinities (Schreiber et al., 1997), seven mutant complexes (Ala,

Cys, Phe, Gln, Ser, Trp and Tyr) on the Glu73 residue in barnase are made by the Swiss

PDB viewer and followed by MD simulations.

Finally, the crystallographic structure of the SGPB and OMTKY3 complex (Read

et al., 1983) (PDB code=3SGB) is used as the wild-type template for the mutant com-

plexes. The following experimental PDB structures, PDB code 1CSO, 1CT0, 1CT2 and

1CT4 (Bateman et al., 2000) for P1 Ile, Ser, Thr and Val mutant complexes and PDB

code 1SGP (Kui et al., 1995) for P1 Ala mutant complex and PDB code 2NU0, 2NU1,

2NU2, 2NU3, 2SGF for P1 Trp, His, Arg, Lys and Phe mutant complexes are already ex-
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isted but these structures were not used to calculate the binding affinities of the mutant

complexes because hand-mutated structures from the wild-type template are well fitted

to experimental mutant PDB structures whose RMSDs with experimental PDB struc-

tures are all within 0.49Å and calculations of BPTI-trypsin complexes already show the

validity of binding affinities from hand-mutated and MD simulated mutant complexes as

shown on Figure 2.3. For the cross-reference from the wild-type template to the protein

complexes used in the binding affinity measurements, the first 6 residues in OMTKY3

inhibitor chain on the wild-type structure, PDB code 3SGB, are deleted. The final tem-

plates for The SGPB and OMTKY3 complex contains 185 SGPB residues, 50 OMTKY3

residues.

2.4 Results and Discussion

2.4.1 Binding energy calculations of BPTI-trypsin complexes

The binding free energies of BPTI-trypsin complexes are calculated according to our

model. Firstly, the binding free energy, ∆G, is calculated and the change of binding

affinity from the mutation of P1 residue, ∆∆G = ∆Gbind(mutant)−∆Gbind(wild-type),

is obtained. The correlation between calculated and experimental data (Krowarsch et al.,

1999). of the binding free energy, ∆G, is shown on the Figure 2.4(a) and the relation of

changes in the binding free energy with a single mutation is also drawn on Figure 2.4(b)

and the values are also listed in Table 2.2. In Figure 2.4(a), there are two mutants data

which give the positive binding affinity (repulsion) instead of small negative affinity as

the experiment shows.

The calculation of the binding free energy of BPTI-trypsin complexes shows the

positive binding energy for the acidic P1 Asp and P1 Glu variants in BPTI-trypsin

complexes. Considering the binding arrangement of the P1-S1 site in BPTI-trypsin

complex, the electrostatic repulsion between S1 Glu and acidic P1 makes the binding
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a b 

Figure 2.4 The binding free energy changes of BPTI-trypsin complexes af-
ter applying the pKa shifts of P1 Asp and P1 Glu (a). The
red square boxes represent the negative charged acidic P1 vari-
ants and the green up-triangles do the protonated and neutral
P1 after using using PROPKA 2.0 (Delphine et al., 2008). The
red arrows indicate the binding affinity shifts from positive to
negative one. Y-axis is the observed (experimental) binding free
energies of 10 P1 variants (Krowarsch et al., 1999). After con-
sidering the pKa shifts for the acidic P1 residues, the correlation
of ∆∆G between observed and calculated data is shown on (b).
The linear fit correlation coefficient from all mutants is 0.912.
The linear fit excluding the mutations making water mediated
hydrogen bonds (two acidic P1 mutants as red triangles) yields
0.982.
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too unfavorable when both residues are negatively charged. The experimental result

still indicates favorable binding affinities of P1 Asp and P1 Glu mutants, ∆G = −6.478

and −8.534 respectively. The pKa shift of P1 Glu mutant in OMTKY3-SGPB complex

from 4.46 (unbound) to 8.74 (bound) was measured experimentally (Qasim et al., 1995).

By Brandsdal et al. the pKa shift of P1 Glu mutant in OMTKY3-SGPB complex was

calculated to 13.1 and they also calculated the pKa shift of P1 Glu mutant of BPTI-

trypsin complex upon binding from 4.3 to 14.3 (Brandsdal et al., 2006). Even though

their calculations of pka shifts are too overestimated, we obtained an idea that acidic P1

Glu in BPTI-trypsin complex is protonated. Therefore negative charge no more exists

in the reference pH=8.3 condition. To make consistent data of pKas in unbounded

state and bounded state, we use the PROPKA 2.0 (Delphine et al., 2008) because this

program is known as the most accurate one to predict the pKa values of amino acids

compared with a large data set of experimentally determined pKas (Davies et al., 2006).

For our calculations it gives pKa values 8.7 and 8.8 for P1 Asp and P1 Glu mutants in

BPTI-trypsin complexes and also gives pKa values 8.8 for P1 Glu mutant in OMTKY3-

SGPB complex which is close to 8.74 from the experiment (Qasim et al., 1995). With

the shifted pKas, the calculated binding free energies are much more improved to fit to

the binding affinity trend which is indicated on Figure 2.4(a). The red arrows show the

binding free energy changes from the positive one (using generic pKa) to the negative

one (using pKa that accounts for the local environments).

After considering the pKa shifts in BPTI-trypsin compelxes, P1 Asp and P1 Glu

participate into the correlation of changes in the binding affinities between the observed

and calculated data. The overall linear fit coefficient is 0.912. But two acidic P1 data is

still relatively far from the correlation curve because without those two data the linear

fit correlation coefficients improved to 0.982. The reason is from the stabilization effect

of water molecules in the interface of the two proteins when binding. In our model,

water molecules are not explicitly represented. Therefore the effect of the hydrogen
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bonds between water molecules and the side chains of interfacial amino acids are not

considered in the binding energy calculations. We already considered the pKa shifts

on BPTI P1 Asp and P1 Glu as a stabilization effect between P1-S1 binding interface.

Additional stabilization effect is observed by Helland et al. The solvent molecules Sol653

and Sol654 participate into forming the hydrogen bonds with the carboxylate group of

P1 Asp and P1 Glu and the interfacial interaction between P1-S1 is stabilized by the

bridge-forming water molecules (Helland et al., 1999). The RMSD studies between

MD simulated PDB structures and experimental structures describe this water effect.

The RMSDs of Cα from all other 7 mutants except the wild-type are ranged between

1.13Å ∼ 1.31Å. But the RMSD of P1 Glu is 1.53Å and the RMSD of P1 Asp is even

worse 1.75Å. This is the indication that the simulated PDB structures of acidic P1

mutants are not stabilized by the bridge-forming water molecules.

2.4.2 Binding energy calculations of barnase-barstar complexes

The residual model is also applied to a set of barnase-barstar complexes. As com-

parisons, the experimental data set from Schreiber et al. for barnase-barstar is used

to make a correlation between our calculations and the experimental values (Schreiber

et al., 1997). In Figure 2.5, linear fit yields the correlation coefficient, 0.890 for barnase-

barstar complex set. The calculated binding free energies, ∆G, for this set and the

changes in binding free energies, ∆∆G, from the single mutations on the active site are

listed in Table 2.2.

Excluding a mutant which may involve additional hydrogen bonds, the linear fit

correlation improves from 0.890 to 0.932. The mutants from the wild-type Glu73 in

barnase-barstar complexes show the loss of hydrogen bonds and insertion of additional

water molecules reducing the loss in binding energy. Especially for the Ser73E mutant

in our calculation (the red triangle in Figure 2.5) the loss of the hydrogen bond and

insertion of a water molecule causing destabilization may be more severe than other.
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Figure 2.5 Calculated versus observed changes in the binding free energy
brought by P1 mutants of barnase-barstar complexes. The linear
fit from all mutant sets yields 0.890. A residue (E73Ser) reported
to form hydrogen bonds with water molecules in the complex
is indicated by red up-triangles in barnase-barstar complexes.
The linear fit excluding this mutation making water mediated
hydrogen bonds yields 0.932 of barnase-barstar complexes.
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Lo Conte et al. and Bahadur et al. analyzed the interface of protein-protein com-

plexes with the interfacial atomic structures and classified the ratios of water molecule

participation (Lo Conte et al., 1999; Bahadur and Zacharias, 2008). According to this

analysis, all the interfacial residues in the barnase-barstrar complex are buried with wa-

ter molecules. Again, given the simplicity of our model without explicit water modeling

the correlation between the observed and the calculated binding energies is quite good

for this system.

2.4.3 Binding energy calculations of OMTKY3-SGPB complexes

The experimental pKa shift of OMTKY3 P1 Glu bound to SGPB is 8.7 (Qasim et al.,

1995) and also calculated to 13.1 (Brandsdal et al., 2006). We also used the PROPKA

2.0 (Delphine et al., 2008) and it gives pKa values 8.7 and 8.8 for OMTKY3 P1 Asp and

P1 Glu. With these shifted pKas, the binding free energies, ∆G, of protein complex set

are calculated and changes in binding free energies, ∆∆G, from the single mutations on

the active site are listed in Table 2.2. The correlation of ∆∆G data of our calculations

with the observed data (Lu et al., 1997) yields the linear fit correlation coefficient, 0.828.

After taking into account the pKa shifts of the acidic P1 mutants, there are four

additional exceptional data points in the correlation fitting in Figure 2.6(b). If all

exceptional data points are excluded, the correlation between our calculations and the

experimental results of ∆∆G yields an improved linear fit from 0.828 to 0.945.

The SGPB protein prefers hydrophobic P1 side chain which are not branched at β-

carbon (Lu et al., 1997). The wild-type Leu18I fits into the S1 pocket of SGPB binding

site in Figure 2.8(a) (Bateman et al., 2000). This pocket has narrow top entrance and

broadening cavity toward the bottom. This narrow top structure causes that the β-

branched residues cannot fit into the pocket. Thus, the β-branched side chains are

not complementary to the shape of the S1 binding site. The observed χ1 angles of

these residues in S1 pocket are approximately 40◦ (Ile18I, 33◦; Val18I, 47◦; Thr18I, 39◦;
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a b 

Figure 2.6 Calculated versus observed changes in the binding free energy
brought by P1 mutants of OMTKY3-SGPB complexes (a) and
(b). The linear fit from all mutant sets yields 0.828. Deleterious
effects of β-branched residues are indicated by green rectangles
in Figure (b) in OMTKY3-SGPB complexes. Excluding this
data makes the linear fit coefficient raise to 0.945.

(a) P1 Asp (b) P1 Glu

Figure 2.7 Structure of the P1-S1 binding site in BPTI-trypsin with P1 Asp
(a) and P1 Glu (b). Only the hydrogen bonds between interfacial
water molecules and P1, S1 residues are indicated by dashed
lines. Figures were taken from Helland et al. (Helland et al.,
1999)
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Table 2.2 Comparison of the binding free energy between the experimental
data and calculated data ∆G. The first set is the result of P1

mutants of BPTI-trypsin complexes, the second and third sets
are the results of p1 mutants of barnase-barstar complexes and
SGPB-OMTKY3 complexes respectively. The PDB codes used
here are based on the PDB code of the wild-type template for
each complex set: the first 4 letter code is the experimental PDB
code of the wild-type and 5th code is the one-letter code of the
mutated amino acid. The wild-type itself is shown as bold char-
acter. kcal/mol unit is used for all energy terms. The calculated
binding free energies in each complex set are linearly scaled by
setting the calculated binding free energy of the wild-type equal
to the experimental binding free energy because of our model
which includes only the electrostatic and van der Waals energy
contributions.

PDB ∆Gobs ∆Gcalc

3BTK -17.86 -17.86
3BTKM -10.25 -9.11
3BTKQ -8.59 -7.76
3BTKT -7.37 -7.39
3BTKW -9.29 -10.40
1B27A -16.70 -16.36
1B27C -16.50 -16.45
1B27F -16.80 -16.64
1B27Q -17.60 -17.66
1B27S -16.00 -16.42
1B27W -17.40 -17.11
1B27Y -16.60 -16.68
1B27 -19.00 -19.00
3SGBA -11.55 -12.01
3SGBC -14.52 -13.88
3SGBD -8.90 -7.29
3SGBE -8.59 -8.18
3SGBF -13.15 -12.11
3SGBH -12.81 -10.73
3SGBI -10.07 -11.27
3SGBK -11.36 -9.87
3SGB -14.51 -14.51
3SGBM -14.08 -14.42
3SGBR -11.17 -9.95
3SGBS -10.39 -10.63
3SGBT -11.34 -9.04
3SGBV -11.50 -12.76
3SGBW -12.66 -11.66
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Ser18I, −46◦ or 40◦) that are rotated ∼= 180◦ away from their actual orientations (for

Val mutation, see Figure 2.8(b)). The alternate conformations for Ser18I Oγ are also

observed as shown on Figures 2.8(c) and 2.8(d). When the β-branched residues involve

binding the bottom of the pocket is left relatively empty to avoid the steric crashes in

contrast to the wild-type Leu18I whose side chain tightly fits into the bottom. Finally

the empty cavity which is rare in protein-protein recognition site (Janin and Chothia,

1990) causes the complementary action involves close packing of the atoms between two

protein molecules. The destabilization of a protein complex with respect to the cavity

made by the mutation with β-branched residue is directly proportional to the cavity

size. This uneven empty cavity followed by the closed packing from the β-branched

residue mutation finally alters the geometric structure of the interface and this effect

are described in our residual model. That is why the binding free energies of Ile18I,

Val18I, Thr18I and Ser18I are more widely spread in Figure 2.6(b). On the other hand,

our model can still account for the major changes of the binding energies due to single

mutations for this system besides some effects due to atomic details.

2.5 Concluding Remarks

Three sets of protein-protein binding complexes, BPTI-trypsin, barnase-barstar and

OMTKY3-SGPB are studied using our residue level protein-protein interaction model (Song,

2003; Song and Zhao, 2004). These complex sets involve changes in binding affinities of

mutations on positively charged, negatively charged and neutral residues on the interfa-

cial surfaces. Using the Poisson-Boltzmann linear integral equation solver implemented

with the fast multipole method to calculate the electrostatic and the van der Waals inter-

action free energy, reasonable agreements with the binding affinities of these complexes

from experiments demonstrate the utility of such a coarse-grained model to capture the

most important contributions of protein binding.
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(a) Leu 18I (b) Val 18I

(c) Ser 18I OγA (d) Ser 18I OγB

Figure 2.8 Structural analysis on the interface of SGPB-OMTKY3 com-
plexes. The molecular surface of SGPB is filled with white.
The molecular surface of OMTKY3 inhibiotr residues are de-
picted as a gold mesh around the atoms(Oxygen, red; Nitrogen,
blue; Carbon, gold) (a):SGPB:OMTKY3-Leu18I(wild-type);
(b): SGPB:OMTKY3-Val18I; (c): SGPB:OMTKY3-Ser18I
OγA; (d): SGPB:OMTKY3-Ser18I OγB. All figures were taken
from Bateman et al. (Bateman et al., 2000)
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At the same time additional effects due to atomic details during binding have to

be considered to yield accurate binding affinities. For example, for P1 Asp and P1

Glu mutants in BPTI-trypsin complexes, the calculated pKa based on the PROPKA

2.0 (Delphine et al., 2008) to describe the neutral behaviors of acidic residues greatly

improve the correlations with experimental data. Considering the limited accuracy of

calculations of residual pKas, there will be a possible improvement of binding free energy

calculations by using the experimental pKas especially for the residues may have large

charge changes upon binding.
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CHAPTER 3. Calculations of the Second Virial Coefficients

of Proteins with the Extended Fast Multipole Method

3.1 Abstract

The osmotic second virial coefficients B2 are directly related to the solubility of pro-

tein molecules in electrolyte solutions and determined by molecular interactions involving

both solvent and solute molecules. The calculations of interaction energies account for

the electrostatic and the van der Waals interactions with the structural anisotropic prop-

erties of protein molecules. The orientational dependence of interaction energies between

two proteins is determined by the crystal space group operations and relatively small

number of protein-protein pair configurations according to the anisotropic patch model

are required to calculate B2 in this model. With the extended fast multipole methods

both with double-tree and single-tree algorithm, the boundary element formulations of

interaction energies can be applied with relatively low computational cost to the large

protein molecules. B2 Calculations of the Bovine Pancreatic Trypsin Inhibitor are first

performed to validate our model and the results of lysozyme protein under different

salts, salt concentrations, pH and temperatures are correlated to the experimental B2.

3.2 Introduction

In a remarkable observation, George and Wilson found that there is a correlation

between slightly negative second virial coefficient of a protein solution and its successful
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crystallization condition (George et al., 1997). There is also a correlation between the

solubility of a protein in an electrolyte solution and the osmotic second virial coefficient

B2 of the solution (Veesler et al., 1996; Boistelle et al., 1997). These observations have led

to numerous studies on the second virial coefficients of protein solutions with the hope to

use this property to narrow down the parameter space of protein solutions for the search

of optimal crystallization conditions. For example, even for membrane proteins rapid

screening of small molecules and detergents as crystallization additives are achieved to

improve the crystallization conditions of light harvesting protein complexes (Gabrielsen

et al., 2010).

Experimentally, the osmotic second virial coefficients B2 can be measured by using

the Static Light Scattering(SLC) (George et al., 1997; Farnum and Zukoski, 1999; Guo

et al., 1999), the Small Angle X-ray Scattering(SAXS) (Bonneté et al., 2004), Small

Angle Neutron Scattering(SANS) (Velev et al., 1998) or Self-Interaction Chromatogra-

phy(SIC) (Tessier et al., 2002). All of these methods, however, are quite demanding due

to large amounts of proteins used in the measurements. So far, using the B2 of protein

solutions as a tool to screen the solution conditions is not a routine practice yet in most

crystallographers’ labs.

To overcome the protein consumption problem in B2 measurements, one possible

alternative is to use computational methods to calculate the second virial coefficients

of protein solutions. B2 is related to molecular interactions in terms of the orientation-

ally averaged potential of mean force(PMF), W (r12), where r12 is the center-to-center

distance,

B2 = −2π

∫ ∞
0

(
e−W (r12)/kBT − 1

)
r2

12dr12, (3.1)

where W is the interaction free energy between two proteins, kB is the Boltzmann con-

stant and T the temperature. Previous efforts to model the interaction free energy

between two protein molecules and to compute B2 have been based on idealized descrip-
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tions of proteins. The protein molecules are mostly treated as spheres, although Vilker

et al. modeled a protein(bovine serum albumin) as an ellipsoid (Vilker et al., 1981).

For spherical model approaches, the interaction is normally divided into two parts: the

first part is due to the excluded volume to account for the size of protein molecules

and the second part accounts for the solution dependent effective interaction between

protein molecules. Due to the spherical shape approximation of protein molecules, the

thickness of the hydration layer is often considered as an adjustable parameter for B2

calculations. The solution dependent contributions to B2 are modeled using standard

colloidal methods (Hunter, 1987). Namely the van der Waals interaction is treated in

the Lifshitz-Hamaker framework and the electrostatic interaction (Gallagher and Wood-

ward, 1989; Muschol and Rosenberger, 1997; Kuehner et al., 1997; Vilker et al., 1981)

is obtained using the Poisson-Boltzmann approach. For such idealized spherical mod-

els, with adjustable parameters such as the Hamaker constant the computed B2 have

been partially successful to capture the trend of experimental data at various solution

conditions.

Neal et al. calculated the second virial coefficients by applying orientational depen-

dence protein-protein interaction models (Neal et al., 1998). Electrostatic interactions

in their study were obtained by distributing charges to the ionizable residues, thus an

orientationally dependent charge distribution but treating the protein as a spherical

dielectric cavity. The van der Waals interactions were calculated by a semi-empirical

approach. When the intermolecular distance is large enough, the Lifshitz-Hamaker ap-

proach (Roth et al., 1996) was implemented with the realistic shape of proteins in mind.

At shorter distance, the Optimized Potentials for Liquid Simulations(OPLS) parameter

set (Jorgensen and Tirado-Rives, 1988) was used to capture the short-range interaction.

Even though the comparison between their calculations and experimental measurements

yields large errors for some B2 calculations, this approach did not use any further ad-

justable parameters.
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The goal of our work is to develop a protein-protein interaction model to account

for the realistic shape of proteins and at the same time to capture the effect of solutions

without adjustable parameter. To this end, a residue level model of protein-protein

interaction had been introduced (Song, 2003; Song and Zhao, 2004).

In this model, each residue of a protein is represented by a sphere located at the

geometric center of the residue determined by its native or approximate structure. The

diameter of the sphere is determined by the molecular volume of a residue in a solution

environment (Zamyatnin, 1984). The molecular surface of our model protein is defined

as the Richard-Connolly surface spanned by the union of these residue spheres using

MSMS program (Sanner, 1996). Each residue carries a permanent dipole moment lo-

cated at the center of its sphere and the direction of the dipole is given by the amino

acid type from protein’s native structure. If a residue is charged the amount of charge is

given by the Henderson-Hasselbalch equation using the generic pKa values of residues,

thus the local environmental effects on Ka values are neglected. For each residue there

is also a polarizable dipole at the center of the sphere, whose nuclear polarizability had

been determined from our recent work (Song, 2002a) and the electronic polarizability

is estimated from optical dielectric constant augmented with quantum chemistry cal-

culations (Millefiori et al., 2008). There are three kinds of interactions in this model:

the electrostatic interaction due to the electric double layer effect, the van der Waals

attraction due to the polarizable dipoles and a short range correction term to account

for the short range interactions such as the desolvation energy, hydrophobic interaction

and so on. In this report, we only consider the electrostatic interaction which gives the

most contribution to the protein-protein interaction (Dong and Zhou, 2006; Brock et al.,

2007), the van der Waals interaction and the short range interaction which is accounted

for using the excluded volume based upon realistic shape of the protein.

The electrostatic problem in the electrostatic and the van der Waals interaction

is solved using the Poisson-Boltzmann equation where the realistic shape of protein
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molecules are considered. The boundary element method (BEM) in combination with

the fast multipole method (Greengard, 1988; Greengard and Rokhlin, 1997) is imple-

mented to circumvent the extensive memory problem similar to the recent work (Lu

et al., 2007). The validity of our model was already tested by binding affinity calcula-

tions of several protein complexes (Kim et al., 2010). Direct comparisons between our

calculations of B2 and experimental measurements under various solution conditions

were made and reasonable agreements from these comparisons provide the another con-

crete evidence that our model can be used as a universal model for studies of non-specific

protein-protein interactions in aqueous solutions.

3.3 Theoretical development

3.3.1 General formulation for the second virial coefficient calculation using

a residue level patch model

The osmotic second virial coefficient(B2) can be expressed in terms of the interaction

energy between two proteins McQuarrie (1976).

B2 = − 1

8π

∫
Ω2

∫
Ω1

∫ ∞
0

(
e−W (R,Ω1,Ω2)/kT − 1

)
R2dRdΩ1dΩ2 (3.2)

where the interaction energy W describes the anisotropic interaction between two pro-

teins depending on the center-to-center distance, R, and the relative orientations of two

molecules. Ω1 and Ω2 describe the angular position and the direction of both protein

molecules. We can only calculate the interaction energy where two proteins are not

too close each other so that Eq. (3.2) can be split into two parts, the hard sphere

contribution and the intermolecular interaction.

We can only calculate the interaction energy where the two proteins are not too

close each other so that the Eq. (3.2) can be split into the two parts, the hard sphere
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contribution and the intermolecular interaction.

B2 =
1

8π

∫
Ω2

∫
Ω1

{
1

3
r3
c −

∫ ∞
0

(
e−W (R,Ω1,Ω2)/kT − 1

)
R2dR

}
dΩ1dΩ2, (3.3)

where rc, a function of Ω1 and Ω2, is the hard sphere diameter described by the separation

distance between two protein molecules. Arising problem for solving the integral in Eq.

(3.3) is to integrate out the solid angle dependence, Ω1 and Ω2. It is a hard work to

consider all the possible combinations of the position and orientation of two proteins. We

use the anisotropic patch model (Vega et al., 2008) to set up the interaction pairs defined

by two patches which are the closest surface elements to the inter-particle(center-to-

center) vector between two proteins. The patch vector which is from the center-of-mass

of a protein to the surface patch defines the orientation of a protein and a pair of two

patch indices from two proteins represents the relative orientation of the pair interaction

between two proteins. The number of interaction pairs in patch model depends on the

number of surface elements N and M on each protein A and B respectively and it is N×

M . This number of interaction pairs is still too large to compute all the pair interaction

energies. So an assumption is made that the only dominant pairs of orientations based

upon the crystal lattice structure whose information is described in the Protein Data

Bank(PDB) file are considered to calculate the interaction energy as a function of the

center-to-center separation R(i), where i is the index of pair orientations. With this

sampling we can only compute the interaction energies within the small number of pair

interactions. But the hard sphere contribution should be considered more precisely.

Just a simple treatment using a single sphere for the protein separation can cause a

significant problem because the interaction within the short range dominates the value

of the second virial coefficient B2 (Rosenbaum and Zukoski, 1996; Neal and Lenhoff,

1995). Calculation of the hard sphere separation can be done if the separation distance

is calculated on each surface element of the first protein with its possible interaction
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pairs from the second protein as follows,

B2 = 2π

NA∑
l=1

NB∑
m=1

1

3
r3
c,l,m

σlσm
σAσB

− 2π

p

p∑
i=1

∫ ∞
0

(
e−W (R(i),i)/kT − 1

)
R(i)2dR(i), (3.4)

where rc,l,m is the hard sphere separation of two protein molecules when the surface

element l on protein A and the surface m on protein B are upon contact. NA and NB

are the number of surface elements, σA and σB are total surface areas of protein A and B

and σl and σm are the surface areas of the surface element l on protein A and the surface

element m on protein B respectively. The surface area ratio, σl(σm) to σA(σB), represents

the solid angle dependence, dΩ1(dΩ2). The pair configurations based on the crystal space

group is indicated as i and its total number p. So the center-to-center distance of each

pair configuration and the interaction energy have dependence on the pair configuration

index i, thus Wi and R(i). In this report, the interaction energy between two protein

molecules can be calculated by the sum of the electrostatic interaction energy and the

van der Waals interaction energy for each distance separation and pair configuration.

W (R(i), i) = ∆Eelec(R(i), i) + ∆Evdw(R(i), i) (3.5)

In the next section, we describe how the pair configurations between two protein

structures can be set up and interaction energy of each configuration can be calculated.

3.3.2 General formulation of the electrostatic interaction free energy be-

tween two proteins with the Boundary Element Method

We derived the integral equations of the linearized Poisson-Boltzmann equation for

two protein model (Song, 2003) following the previous work (Juffer et al., 1991) whose

study was based on the single domain problem. Consider the molecular surfaces
∑

1 and∑
2 which cover two protein molecules respectively. There are N charges qi and dipoles
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Figure 3.1 Schematic illustration showing the formulation of the electro-
static interaction of two proteins. The orientations of two pro-
teins are defined by two surface patches(red triangles) nearest
to the inter-particle vector(blue arrow) whose magnitude is the
center-to-center distance R. The molecular surfaces are defined
by
∑

1 and
∑

2 for each protein and the n1 and n2 are the out-
ward unit normals on

∑
1 and

∑
2. ε1 and ε2 are the dielectric

constants of the inside protein cavity and solution respectively.
κ represents the inverse Debye screening length. Charge qi and
dipole µi are located on each residue center.

~µi at position ri enclosed by the surface
∑

1 and also there are N charges qj and dipoles

~µj at position rj enclosed by the surface
∑

2. Inside each dielectric cavity the dielectric

constant is ε1 and the dielectric constant of the solution is given as ε2(see Figure 3.1).

The inverse Debye screening length κ is given by the solution’s ionic strength and the

temperature, κ =
√

2IF 2

4πε0εRT
=
√

I
T
× (1.586115104) Ȧ−1, where ε0 is the permittivity of

free space, ε is the dielectric constant of water, R is the gas constant, F is the Faraday

constant and I is the ionic strength of the electrolyte. The integral equations for the

potential ϕ1(r) and ϕ2(r) and their gradient ∂ϕ1(r)/∂(n1) and ∂ϕ2(r)/∂(n2) are given

by the following integral equations (Song, 2003),
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1

2

(
1 +

ε2

ε1

)
ϕ1(r01) +

∫∫
∑

1

L1(r1, r01)ϕ1(r1)dr1

+

∫∫
∑

1

L2(r1, r01)
∂ϕ1(r1)

∂n1

dr1

−
∫∫

∑
2

L1(r2, r01)ϕ2(r2)dr2

+

∫∫
∑

2

L2(r2, r01)
∂ϕ2(r2)

∂n2

dr2

=
2N∑
i=1

{qiF (ri, r01) + ~µi · ∇F (ri, r01)} /ε1, (3.6)

1

2

(
1 +

ε1

ε2

)
∂ϕ1(r01)

∂n1

+

∫∫
∑

1

L3(r1, r01)ϕ1(r1)dr1

+

∫∫
∑

1

L4(r1, r01)
∂ϕ1(r1)

∂n1

dr1

−
∫∫

∑
2

L3(r2, r01)ϕ2(r2)dr2

+

∫∫
∑

2

L4(r2, r01)
∂ϕ2(r2)

∂n2

dr2

=
2N∑
i=1

{
qi
∂F

∂n01

(ri, r01) + ~µi · ∇
∂F

∂n01

(ri, r01)

}
/ε1, (3.7)

1

2

(
1 +

ε2

ε1

)
ϕ2(r02)−

∫∫
∑

1

L1(r1, r02)ϕ1(r1)dr1

+

∫∫
∑

1

L2(r1, r02)
∂ϕ1(r1)

∂n1

dr1

+

∫∫
∑

2

L1(r2, r02)ϕ2(r2)dr2

+

∫∫
∑

2

L2(r2, r02)
∂ϕ2(r2)

∂n2

dr2

=
2N∑
i=1

{qiF (ri, r02) + ~µi · ∇F (ri, r02)} /ε1, (3.8)
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1

2

(
1 +

ε1

ε2

)
∂ϕ2(r02)

∂n2

−
∫∫

∑
1

L3(r1, r02)ϕ1(r1)dr1

+

∫∫
∑

1

L4(r1, r02)
∂ϕ1(r1)

∂n1

dr1

+

∫∫
∑

2

L3(r2, r02)ϕ2(r2)dr2

+

∫∫
∑

2

L4(r2, r02)
∂ϕ2(r2)

∂n2

dr2

=
2N∑
i=1

{
qi
∂F

∂n02

(ri, r02) + ~µi · ∇
∂F

∂n02

(ri, r02)

}
/ε1, (3.9)

where

L1(r, r0) = ∂F
∂n

(r, r0)− ε2
ε1
∂P
∂n

(r, r0), (3.10)

L2(r, r0) = P (r, r0)− F (r, r0), (3.11)

L3(r, r0) = ∂2F
∂n0∂n

(r, r0)− ∂2P
∂n0∂n

(r, r0), (3.12)

L4(r, r0) = − ∂F
∂n0

(r, r0) + ∂P
∂n0

(r, r0) ε1
ε2

(3.13)

and

F (r, r0) = 1
4π|r−r0| ,

P (r, r0) = e−κ|r−r0|

4π|r−r0| . (3.14)

Although the traditional Boundary Element Method such as Atkinson and his cowork-

ers’ (Atkinson and Han, 2009) can be used to solve above integral equations, the memory

requirement is too costly even on the newest computers using either a direct linear sys-

tem solver or iterative solver, such as Generalized minimal residual method(GMRES)for

a moderate size protein. In the current work the fast multipole method is implemented

and the details will be outlined in chapter 5. Once the above integral equations are
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solved the potentials inside the dielectric cavity are,

ϕ1(r01) = −
∫∫

∑
1

L1(r1, r01)ϕ1(r1)dr1

−
∫∫

∑
1

L2(r1, r01)
∂ϕ1(r1)

∂n1

dr1, (3.15)

ϕ2(r02) = −
∫∫

∑
2

L1(r2, r02)ϕ2(r2)dr2

−
∫∫

∑
2

L2(r2, r02)
∂ϕ2(r2)

∂n2

dr2, (3.16)

∇01ϕ1(r01) = −
∫∫

∑
1

∇01L1(r1, r01)ϕ1(r1)dr1

−
∫∫

∑
1

∇01L2(r1, r01)
∂ϕ1(r1)

∂n1

dr1, (3.17)

∇02ϕ2(r02) = −
∫∫

∑
2

∇02L1(r2, r02)ϕ2(r2)dr2

−
∫∫

∑
2

∇02L2(r2, r02)
∂ϕ2(r2)

∂n2

dr2. (3.18)

The electrostatic free energy between the protein molecules at a center-to-center

distance, R, and relative orientations, Ω1 and Ω2, is given by,

Eele(R,Ω1,Ω2) =
N∑
i=1

{
qi
ε1
ϕ1(ri) +

1

ε1
~µi · ∇ϕ1(ri)

}

+
N∑
j=1

{
qj
ε1
ϕ2(rj) +

1

ε1
~µj · ∇ϕ2(rj)

}
. (3.19)

Finally, the effective electrostatic interaction between two proteins is

∆Eele(R,Ω1,Ω2) = Eele(R,Ω1,Ω2)− Eele(R→∞,Ω1,Ω2)

+
N∑
i=1

N∑
j=1

1

ε1

{
qiTijqj − qi

∑
α

Tαijµj,α

+
∑
α

µi,αT
α
ijqj −

∑
α

µi,αT
αβ
ij µj,β

}
, (3.20)

where the interaction tensors, charge-charge, charge-dipole, dipole-charge and dipole-
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dipole, are given by,

Tij =
e−κR

R
,

Tαij = ∇αTij = e−κR
(1 + κR)

R3
rij,α,

Tαβij = ∇α∇βTij = e−κR
{(

3

R5
+

3κ

R4
+
κ2

R3

)
rij,αrij,β

−
(

1

R3
+

κ

R2

)
δαβ

}
. (3.21)

Here ∇α is ∂
∂rij,α

for each α = x, y, z. The last summation terms in Eq. (3.20) are the

interaction energies between charges and dipoles in two proteins when the solution is in

the same dielectric constant ε1 such as the inside protein and with the inverse Debye

screening length κ.

3.3.3 General formulation of the van der Waals interaction free energy

The van der Waals interaction free energy between two proteins is defined as,

∆Evdw(R,Ω1,Ω2) = Evdw(R,Ω1,Ω2)

− Evdw(R→∞,Ω1,Ω2). (3.22)

Song and Zhao formulated the van der Waals interaction between the protein molecules

in an electrolyte solution as the following effective action in Fourier space (Song and

Zhao, 2004),

S [mr,n] = −β
2

∑
r

n=∞∑
n=−∞

1

αr,n

mr,n ·mr,−n

+
β

2

∑
r6=r′

n=∞∑
n=−∞

1

αr,n

mr,n · T (r− r′) ·mr,−n

+
β

2

∑
r,r′

n=∞∑
n=−∞

1

αr,n

mr,n ·Rn(r− r′) ·mr,−n, (3.23)

where αr,n is the frequency-dependent polarizability of a residue located at positon r.

T (r − r′) is the dipole-dipole interaction tensor between r and r′. Rn(r − r′) is the
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reaction field tensor at frequency ωn = 2πn/β~. If the electrolyte solvent is treated

by the Debye-Hückel theory, this reaction field tensor can be calculated by solving the

Poisson-Boltzmann equation with the dielectric constant ε(iωn). The quantum partition

function from this effective action of the system is,

Q (R,Ω1,Ω2) =
∏
n

[
2π

βdetAn (R,Ω1,Ω2)

]1/2

, (3.24)

where R represents the center-to-center distance between two proteins, Ω1 and Ω2 is the

relative orientations of two proteins and An’s matrix element is given by,

An(r, r′) =
1

αr,n

δr,r′ − T (r− r′)−Rn(r− r′), (3.25)

where r and r′ represent residues in each protein. The symbol “det” represents the

determinant of the matrix. Finally, the van der Waals interaction free energy is given

by,

∆Evdw =
1

2
kBT

n=∞∑
n=−∞

[ln {detAn (R,Ω1,Ω2)}

− ln {detAn (R→∞)}] . (3.26)

In order to evaluate the van der Waals interaction in our model, the reaction field

matrix Rn(r−r′) has to be calculated with the properties of the proteins and the solution.

The boundary element formulation which is used to evaluate the electrostatic free energy

also can be used to calculate the reaction field matrix. Consider two molecular surfaces∑
1 and

∑
2 spanned by two protein molecules. There are N polarizable dipoles mr at

position r enclosed by each surface
∑

1 and
∑

2. Inside this dielectric cavity the dielectric

constant is one and the dielectric constant of the solution is ε(iωn) at the Matsubara

frequency ωn. The inverse Debye screening length κ is given by the solution’s ionic

strength and the temperature. If we recognize that in order to calculate the potential at

the molecular surface a dipole m at position r0 can be described by an effective charge

density ρeff (r) = −m∇δ(r − r0) (Jackson, 1999), the reaction field matrix involving

residues ri and rj can be given as,
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1n

2n

1

2

,( )  

mr mr

Figure 3.2 Schematic illustration showing the formulation of the van der
Waals interaction of two proteins. The molecular surfaces are
defined by

∑
1 and

∑
2 for each protein and the n1 and n2 are

the outward unit normals on
∑

1 and
∑

2 and ε is the dielectric
constant of the outside solution as a function of the frequency
ω and the inverse Debye screening length κ. The orientations
of two proteins are defined by two surface patches(red triangles)
nearest to the inter-particle vector(blue arrow) whose magnitude
is the center-to-center distance R. mrs stand for the polarizable
dipoles located on the residue center.
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R(ri, rj) =

∫∫
∑
p

[∇iF (ri, rj) −∇iP (ri, rj)]
∂ϕp
∂np

(rj, rp)drp

+

∫∫
∑
p

[
−∇i

∂F

∂nj
F (ri, rj) +∇i

∂P

∂nj
(ri, rj)ε

]
ϕp(rj, rp)drp, (3.27)

where F and P are followed by the previous notation in Eq. (3.14) and p which can

be 1 or 2 depends upon rj in
∑

1 or
∑

2. ϕp and ∂ϕp can be obtained by solving the

following linear equations of integral equations (Song, 2003; Juffer et al., 1991).

1

2
(1 + ε(iωn))ϕ1(ri, r01)

+

∫∫
∑

1

L1(r1, r01)ϕ1(ri, r1)dr1

+

∫∫
∑

1

L2(r1, r01)
∂ϕ1

∂n1

(ri, r1)dr1

−
∫∫

∑
2

L1(r2, r01)ϕ2(ri, r2)dr2

+

∫∫
∑

2

L2(r2, r01)
∂ϕ2

∂n2

(ri, r2)dr2

= ∇iF (ri, r01), (3.28)

1

2

(
1 +

1

ε(iωn)

)
∂ϕ1

∂n1

(ri, r01)

+

∫∫
∑

1

L3(r1, r01)ϕ1(ri, r1)dr1

+

∫∫
∑

1

L4(r1, r01)
∂ϕ1

∂n1

(ri, r1)dr1

−
∫∫

∑
2

L3(r2, r01)ϕ2(ri, r2)dr2

+

∫∫
∑

2

L4(r2, r01)
∂ϕ2

∂n2

(ri, r2)dr2

= ∇i
∂F

∂n01

(ri, r01), (3.29)
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1

2
(1 + ε(iωn))ϕ2(ri, r02)

−
∫∫

∑
1

L1(r1, r02)ϕ1(ri, r1)dr1

+

∫∫
∑

1

L2(r1, r02)
∂ϕ1

∂n1

(ri, r1)dr1

+

∫∫
∑

2

L1(r2, r02)ϕ2(ri, r2)dr2

+

∫∫
∑

2

L2(r2, r02)
∂ϕ2

∂n2

(ri, r2)dr2

= ∇iF (ri, r02), (3.30)

1

2

(
1 +

1

ε(iωn)

)
∂ϕ2

∂n2

(ri, r02)

−
∫∫

∑
1

L3(r1, r02)ϕ1(ri, r1)dr1

+

∫∫
∑

1

L4(r1, r02)
∂ϕ1

∂n1

(ri, r1)dr1

+

∫∫
∑

2

L3(r2, r02)ϕ2(ri, r2)dr2

+

∫∫
∑

2

L4(r2, r02)
∂ϕ2

∂n2

(ri, r2)dr2

= ∇i
∂F

∂n02

(ri, r02), (3.31)

where L1, L2, L3, and L4 are defined in Eqs. (3.10), (3.11), (3.12) and (3.13). To evaluate

the van der Waals interaction free energy in Eq. (3.26), the reaction field matrix should

be built corresponding to the dielectric constant ε(iωn) for each frequency ωn. And the

total polarizability of a residue in a protein can be given by,

αn = α(iωn) =
αnu

1 + ωn/ωrot
+

αel

1 + (ωn/ωI)
2 , (3.32)

where αnu is the static nuclear polarizability of a residue (Song, 2002a) and ωrot is a

characteristic frequency of nuclear collective motion from a generalization of the De-
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bye model. αel is the static electronic polarizability of a residue and ωI is the ion-

ization frequency of a residue as in the Drude oscillator model of electronic polariz-

abilities. ωrot = 20cm−1 for this calculation which is typical rotational frequency of

molecules (Israelachvili, 1985). Other properties are listed in Table 2.1 based on the

calculated result (Millefiori et al., 2008). An accurate parametrization of the dielectric

function varε(iω) of water based on the experimental data is taken from Parsegian’s

work (Parsegian, 1975).

3.3.4 Solving the linear system: the iterative double-tree Fast Multipole

Method

The system of linear equations in Eqs. (3.6), (3.7), (3.8) and (3.9) for the electrostatic

interaction energy and Eqs. (3.28), (3.29), (3.30) and (3.31) for the van der Waals

interaction energy have the following form,

(I− L)A = B (3.33)

where A and B are single column vectors with the size of 2N , the number of surface

elements on the protein molecules for the electrostatic energy calculation and also can

be (2N) × (2N) matrix for the reaction field calculation of the van der Waals energy

calculation. Rewriting this equation with details makes the following form of the linear

system.

I



ϕ00

ϕ11

ϕ22

ϕ33


−



L00
1 L01

2 L02
1 L03

2

L10
3 L11

4 L12
3 L13

4

L20
1 L21

2 L22
1 L23

2

L30
3 L31

4 L32
3 L33

4





ϕ00

ϕ11

ϕ22

ϕ33


=



F00

F11

F22

F33


(3.34)

where I is the identity matrix with the size of (2N) × (2N), the matrix element, L1,

L2, L3 and L4 are defined in Eqs. (3.10), (3.11), (3.12) and (3.13), and the first upper

indices are the equation indices from Eq. (3.6) to Eq. (3.9) or from Eq. (3.28) to Eq.
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(3.31) for the electrostatic interaction and the van der Waals interaction respectively.

The second upper indices are the indices of term L’s indices in each integral equation.

This system of linear equations is the order O((2N)2), so we need to consider how we can

save the computational cost by reducing the size of matrix. If the interaction between

two different bodies compared with the self-interaction of each body, the contribution

from the matrix elements in indices 02, 03, 12, 13 and 20, 21, 30, 31 to the matrix-vector

multiplications compared with other elements is relatively small, so we can define the

following subsets of linear system based on the self-body interactions.ϕ̄00 0

0 ϕ̄11

−
L00

1 L01
2

L10
3 L11

4


 ϕ̄00

ϕ̄11

 =

F00

F11

 , (3.35)

ϕ̄22 0

0 ϕ̄33

−
L22

1 L23
2

L32
3 L33

4


 ϕ̄22

ϕ̄33

 =

F22

F33

 , (3.36)

where

ϕii = ϕ̄ii + δϕii (3.37)

and i = 0, 1, 2, 3, that is, the potential ϕ can be separated by the potential of the self-

interaction ϕ̄ and the perturbation due to the second body interaction δϕ. Inputting

Eq. (3.37) to Eq. (3.34) and using the definition from Eq. (3.35) and Eq. (3.36) give

new system of linear equations as,

I



δϕ00

δϕ11

δϕ22

δϕ33


−



L00
1 L01

2 L02
1 L03

2

L10
3 L11

4 L12
3 L13

4

L20
1 L21

2 L22
1 L23

2

L30
3 L31

4 L32
3 L33

4





δϕ00

δϕ11

δϕ22

δϕ33


=



L02
1 ϕ̄22 + L03

2 ϕ̄33

L12
3 ϕ̄22 + L13

4 ϕ̄33

L20
1 ϕ̄00 + L21

2 ϕ̄11

L30
3 ϕ̄00 + L31

4 ϕ̄11


. (3.38)
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Using the same assumption to have Eqs. (3.35) and (3.36), this linear system can be

reduced to the following two linear systems with the order O(N2).δϕ00 0

0 δϕ11

 −

L00
1 L01

2

L10
3 L11

4


δϕ00

δϕ11

 =

L02
1 ϕ22 + L03

2 barϕ33

L12
3 ϕ22 + L13

4 ϕ33

 , (3.39)

δϕ22 0

0 δϕ33

 −

L22
1 L23

2

L32
3 L33

4


δϕ22

δϕ33

 =

L20
1 ϕ00 + L21

2 ϕ11

L30
3 ϕ00 + L31

4 ϕ11

 . (3.40)

To solve the system of linear equations in Eq. (3.33), first we solve the linear systems

of self-interactions in Eq. (3.35) and Eq. (3.36). Then the right-hand side vectors in

Eq. (3.39) and Eq. (3.40) are obtained by matrix-vector products between the previous

solution vectors from the self-interactions and the matrix elements from the two separate

bodies. The perturbations δϕ are computed after solving two systems of linear integral

equations in Eq. (3.39) and Eq. (3.40). And we can get the new solution ϕ by the sum

of the self-interaction and the perturbation in Eq. (3.37). By solving Eq. (3.39) and Eq.

(3.40) with inputting new ϕ iteratively, the change of potential δϕ can be finally obtained

when the change of the solution of linear system is converged to the given tolerance value

after each iteration. In this iterative method, we only need one matrix-vector product

operation between two separated bodies in each iteration. This iteration is called the

“outer” iteration to separate the term with the “inner” iteration which is used to solve

the single linear system with the iterative solver, such as GMRES. The “outer” iteration

can reduce the size of system from O(2N × 2N) to O(N ×N) and the “inner” iteration

can be accelerated by introducing the fast multipole method(FMM) (Kim et al., 2010).

Figure 3.3 shows how the double tree structures are defined to cover one body in one

tree and the interactions between two separated bodies are allowed in FMM algorithm to

calculate matrix-vector products in Eq. (3.39) and Eq. (3.40) to calculate the right-hand

side vectors.

This double-tree FMM with “outer” iterative method has an advantage that can
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R 

Figure 3.3 Schematic illustration showing the double tree fast multiple
method(dt-FMM). Two trees are located with the center-to–
center distance(R) separation. On level=2, all the Multipole–
to-Local translations(M2L) are computed for far-field interac-
tions. On level=3, the long interaction(solid red) is not allowed
in the M2L translation list(the interaction list) but the inter-
action(solid green) is allowed. On level=4, also long interac-
tions(red dashed line) are not allowed but the interaction within
the interaction list(dashed green) is computed.

reduce the computational resource from the traditional direct boundary element method,

O((2N)2) to the one of the single body problem, O(N). But one possible drawback is

the closest distance between two bodies. The center-to-center distance of two bodies

should be longer than the size of tree structure in any dimension. No overlap of trees

is allowed in this double-tree FMM. For example, the closest center-to-center distance

between two BPTI proteins in the crystal lattice structure is about the range in 24-28Å,

but it should be more than 33Å in double-tree FMM to avoid the tree overlapping. The

accuracy of the double-tree FMM is going to be worse if two trees are getting closer(see

Figure 3.7). In this case, the number of “outer” iteration is also getting increase. Thus,

the overall performance will be slower. In general, the double-tree FMM is useful when

the center-to-center distance is about 1.5-2 times longer than the size of tree.
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3.3.5 Solving the linear system: the single-tree Fast Multipole Method

In order to calculate the interaction energy when two bodies are too close to be

calculated by the double-tree FMM, we introduce the single-tree FMM in Figure 3.4.

This method is based on the single body FMM (Kim et al., 2010). The system of linear

integral equations in Eqs. (3.6), (3.7), (3.8) and (3.9) for the electrostatic interaction

and Eqs. (3.28), (3.29), (3.30) and (3.31) for the van der Waals interaction should be

reduced to the equations of a single body. One problem we need to solve is the additional

negative signs of L02
1 , L12

3 , L20
1 and L30

3 in Eq. (3.34) where the signs of gradients are

changed because of the convention for the outside of the cavity. So we need to consider

this sign change when the integral is performed by the surface on the second body when

the source is in the first body. In the traditional single body FMM, there is no way

to deal with this conventional change, but this problem can be solved by transferring

the additional information of the ownership of surface elements during the process of

Multipole-to-Multipole(M2M) and Local-to-Local(L2L) translations. Figure 3.5 shows

the details how the ownership of each surface element in a leaf cell can be transferred

to the parent’s cell in FMM.

Because the single-tree FMM is based on the single-body FMM, the computational

cost follows the order O(2N), that is about twice more than the one of the double-tree

FMM algorithm. Even thought the single-tree FMM takes twice more memory than

the double-tree FMM, this cost is still highly competitive compared with the traditional

direct Boundary Element Method. Figure 3.6 shows that the direct BEM follows the

quadratic increase via the number of surface elements and two FMMs follow only the

linear increase via orderO(N) orO(2N) for the double and single-tree FMM respectively.

To test both FMM methods, we applied them to the electrostatic interaction energy

calculation of two identical spherical particles. According to Figure 3.7, both solutions

gave correct effective electrostatic interaction energies compared with the analytic so-
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R 

Figure 3.4 Schematic illustration showing the single tree fast multiple
method(st-FMM). Only one tree is located to cover two surface
sets of proteins with the center-to-center distance(R) separa-
tion. On level=2, only the Multipole-to-Local translations(M2L)
which are in the interaction list(solid green) are computed but
the long interaction(dashed red) is not allowed for the M2L
translation.

lution of two identical spheres based on Eq. (A.13) in the appendix. Also we had the

consistent results by two FMM methods when the effective electrostatic interaction en-

ergies between the two BPTI molecules are computed. Also these results were compared

to the result from the direct BEM solver and we found that the single-tree FMM is

slightly more accurate when two particles are getting closer and the double-tree FMM is

more accurate when two particles are farther than the twice of the size of a particle. So

we used both FMM methods to calculate the effective interaction energy between two

protein molecules.

3.3.6 Preparation of protein molecules

The Bovine pancreatic trypsin inhibitor(BPTI) is useful to validate our model to

calculate the osmotic second virial coefficients of a protein in a solution because it is

relatively small protein(the number of residues are 58), the structure is well-known

and the experimental B2 data is presented (Farnum and Zukoski, 1999). We use the

anisotropic patch model (Vega et al., 2008) and extend this patch model with treat-
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1
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1x

2x

1O

2O

1O

2O

Figure 3.5 Schematic illustration showing the single-tree fast multiple
method(st-FMM) in level=2 to level=5.

∑
1 and

∑
2 are the

surfaces of two proteins. All cells with light blue shade belong
to the surface

∑
1 and cells with light yellow shade belong to the

surface
∑

2 respectively. From the lowest level, level=5, the sur-
face index(either 1 or 2) is transferred from the level=5 center
x1 or x2 to the level=4 center O1 or O2 by Multipole-to-Multi-
pole(M2M) translations. This index also can be transferred to
the upper level’s cell. For example, on level=3 the center O′1
or O′2 has the surface index during the process of M2M trans-
lations. The red arrows indicate the flow of the surface index 1
and the green arrows for the surface index 2. The dashed arrows
represent level=5 to level=4 M2M translations and solid arrows,
level=4 to level=3 M2M translations respectively.
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Figure 3.6 Memory cost comparison between the direct Boundary Element
Method(BEM) in red circle, the double-tree FMM(blue square)
and the single-tree FMM(green upper triangle). The number
of surface elements indicated is the number of surface elements
from a single protein(N). So the order of each method is
O((2N)2) for the direct BEM, O(N) for the double-tree FMM
and O(2N) for the single-tree FMM respectively.
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Figure 3.7 Effective electrostatic energy comparison between the analytic
solution(solid line) in Eq. (A.13) and the solutions of the dou-
ble-tree FMM(upper blue triangle) and the single-tree FMM(red
square). The radius of both spheres is 1.0Å and the unit charge
is located in each sphere center. The inverse Debye screening
length is 0.1Å−1 and the dielectric constant is 1.0 inside the
spheres and 10.0 outside spheres.
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ing surface elements as patches to define the anisotropic interaction pairs between two

protein molecules. Because of the large number of patches on the protein surface, it is

really hard work to compute interaction energies of all pairs. To reduce the number of

orientation pairs of surface patches between two protein molecules, we should consider

the most probable configurations of pair interactions between two BPTI molecules. For

this reason the crystal structure(PDB code=6PTI) information is used. According to

this information the crystal space group of BPTI is P21212. We use the transformation

matrix given by this PDB file to apply the linear transformations from the original struc-

ture, A to generate other unit cell elements, B, C and D. Figure 3.8 shows how BPTI

molecules are located in the unit cell of crystallography. We use the relations between

unit cell elements to set up the pair configurations to calculate the interaction energies.

The center-of-mass of the element A is located on the origin and all other elements are

translated to the origin of A, then the interaction energy can be calculated when the sec-

ond element, for example, B is translated to the direction of its original center-of-mass,

(x̄, ȳ, z) as in the space group operation, that is an AB pair configuration, or to the

opposite direction (x, y, z̄) to have additional AB′ pair configuration. From this PDB

structural information we have all six pairs of interactions, AB, AC, AD, AB′, AC′ and

AD′. Figure 3.9 describes the relative orientations of BPTI elements in a unit cell.

We set up an effective model for the interaction free energy of two proteins based

on the residual model. A single sphere represents an amino acid residue in a protein

molecule where the radius of each residual sphere is calculated from the volume of

amino acid in a solution (Zamyatnin, 1984). CHARMMING web portal (Miller et al.,

2008) is used to prepare the topology and coordinate files for each protein element to

generate input files for CHARMM force field (Brooks et al., 1983) with which we can

calculate the position of the center of each residue in a protein molecule and its dipole

moment. Compared with the atom based model, this model has two major advantages;

the number of problem to be solved is reduced from the number of atoms in protein to



www.manaraa.com

57

A

B

C

D

Figure 3.8 2D illustration shows the unit cell of the point group P21212. In
unit cell, there are four elements indicated by the capital letters:
A is on the origin of coordinates and its symmetrical operation
is (x, y, z), B can be obtained by the operation (x̄, ȳ, z), C can
be obtained by the operation (1/2 + x, 1/2 + ȳ, z̄) and D can be
obtained by the operation (1/2+ x̄, 1/2+y, z̄). All the notations
follows the Hermann-Mauguin symmetry notation and the style
of Wondratschek and Müller (Wondratschek and Müller, 2002).
This diagram is taken from Jasinski and Foxman (Jasinski and
Foxman, 2007).
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the number of residues and the suitable number of triangulization of the protein surface

is also decreased (Kim et al., 2010).

The calculations of the osmotic second virial coefficients of the BPTI protein in

solutions use the same conditions from the experiment (Farnum and Zukoski, 1999).

The temperature of the solution is 20◦C which is used both in the integral equation of

B2 in Eq. (3.4) and in the inverse Debye screening length. The pH of the solution is also

set to 4.9 and is used to calculate the charge of each amino acid residue in a protein in

this pH condition by using the Henderson-Hasselbalch equation and the pKa of a residue

calculated by PROPKA 2.0 (Delphine et al., 2008). The generic pKa values of amino

acids are not used because the local pKa of a residue which is either burred inside the

protein or on the surface of the protein may have a shifted pKa as the P1 Glu and P1 Asp

mutations of the BPTI-trypsin complexes (Kim et al., 2010) and the PROPKA 2.0 is

the most accurate program for the pKa prediction (Davies et al., 2006). The dependence

of B2 of BPTI molecules on the concentration of the sodium chloride solution and the

comparison with the experimental B2 data will be described in the result section on this

paper.

In addition to the calculations of the second virial coefficients of Bovine pancreatic

trypsin inhibitor(BPTI) as a function of the concentration of the sodium chloride so-

lution, we calculate the osmotic second virial coefficients of the lysozyme protein in

various conditions. To set up the most probable configurations of pair interactions be-

tween two lysozyme molecules, the crystal structure(PDB code=2ZQ3) information is

used. According to this file the crystal space group of lysozyme is P212121. We use

the transformation matrix given by this PDB file to apply linear transformations from

the original structure, A, to generate other unit cell elements, B, C and D. Figure 3.10

shows how the lysozyme molecules are located in the unit cell of crystallography and

we use the relations between unit cell elements to set up pair configurations to calculate

the interaction energies. The center-of-mass of element A is located on the origin and
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Figure 3.9 3D illustration shows the relative directional orientations of all
BPTI elements in a unit cell of P21212. White colored ribbon
structure indicates the element A, pink, blue and yellow ribbons
are the element B, C and D, respectively. UCSF Chimera (Pet-
tersen et al., 2004) was used to draw this figure.

all other elements are translated to the origin of A, then the interaction energies can be

calculated when the seconde element, for example, B is translated to the direction of

its original center-of-mass, (1/2 + x̄, ȳ, 1/2 + z) as in the space group operation, that is

an AB pair configuration, or to the opposite direction (−1/2 + x, y,−1/2 + z̄) to have

additional AB′ pair configuration. From this PDB structural information we have all six

pairs of interactions, AB, AC, AD, AB′, AC′ and AD′. Figure 3.11 describes the relative

orientations of Lysozyme elements in a unit cell.

The calculations of the osmotic second virial coefficients of the lysozyme in solutions

use the same conditions from the Static Light Scattering(SLS) experiment (Guo et al.,

1999). According to their experimental data, all second virial coefficients are computed

by following conditions. The concentration dependence from 2% to 7% of salt concentra-

tion, the pH dependence from pH = 4.0 to pH = 5.4 and the temperature dependence

from 25◦C to 5◦C are calculated in the sodium chloride solution. The concentration

dependence from 0.50M to 1.10M of the ammonium chloride solution is calculated at
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Figure 3.10 2D illustration shows the unit cell of the point group P212121.
In unit cell, there are four elements indicated by the capital
letters, A is on the origin of coordinates and its symmetri-
cal operation is (x, y, z), B can be obtained by the opera-
tion (1/2 + x̄, ȳ, 1/2 + z), C can be obtained by the opera-
tion (x̄, 1/2 + y, 1/2 + z̄) and D can be obtained by the oper-
ation (1/2 + x, 1/2 + ȳ, z̄). All notations follows the Herman-
n-Mauguin symmetry notation and the style of Wondratschek
and Müller (Wondratschek and Müller, 2002). This diagram is
taken from Jasinski and Foxman (Jasinski and Foxman, 2007).
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Figure 3.11 3D illustration shows the positions and relative directional ori-
entations of all the lysozyme elements in a unit cell of P212121.
White colored ribbon structure indicates the element A, pink,
blue and yellow ribbons are the element B, C and D, respec-
tively. UCSF Chimera (Pettersen et al., 2004) was used to draw
this figure.

pH = 4.5 and temperature 18◦C. Finally, the concentration dependence from 0.10M to

0.70M of the magnesium bromide solution at pH = 7.8 and temperature 23◦C. Compar-

isons between calculated B2 and the experimental B2 are made using the experimental

data mostly from the SLS experiment (Guo et al., 1999) and additional data for the

magnesium bromide salt condition from the Self-Interaction Chromatography(SIC) ex-

periment (Tessier et al., 2002). The experimental data of the second virial coefficients in

the magnesium bromide salt condition and calculated data shows the limitation of our

model based on the DLVO theory and the experimental method.

3.4 Results

The electrostatic interaction energies and the van der Waals interaction energies

between two BPTI molecules are calculated by the single-tree FMM algorithm when

the center-to-center distance between two protein is within the twice of the size of the
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Figure 3.12 The graphs of the electrostatic interaction energies(left) and the
van der Waals interaction energies(right) between two BPTI
molecules are shown above. Each pair configuration is indi-
cated by red solid line, blue lightly dashed line and green dark
dashed line for AB, AC, AD configuration respectively. Two
curves for each pair configuration are shown: the open circle
indicates the interaction energies from 2% NaCl solution and
the color-filled diamond indicates the energy from 7% NaCl
solution. Because of the three-dimensional structure of BPTI
protein, the starting distance of the single-tree FMM calcula-
tion for each pair interaction is different based on the excluded
distance.

protein and by the double-tree FMM when the center-to-center distance is far. Figure

3.12 shows the interaction energy changes in the center-to-center distance R between

two protein molecules and different pair configurations including the dependence on

the inverse debye-Hückel screening length κ which represents the concentration of the

NaCl solution. With this calculated interaction energies, we can get calculated B2 by

integrating Eq. (3.3).

In order to validate our assumption that the pair configuration sampling from crystal

space group operations can represent the whole angular and directional dependence on

Eq. (3.2) and Eq. (3.3) and finally Eq. (3.4) is a good approximation of the Eq.

(3.2), the second virial coefficients of the BPTI protein were calculated by solving Eq.

(3.4). We calculated the B2 contributions from each pair interaction with all six pair

configurations(in this case p = 6) and solved Eq. (3.4) to show our result finally. Figure
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Figure 3.13 The NaCl concentration dependence of the osmotic second
virial coefficients of BPTI protein is shown above. The solid
blue line with circles indicates the experimental B2 from Far-
num and Zukoski and the dashed red line with diamonds shows
our calculated result. The error bars for the experimental data
is from the literature (Farnum and Zukoski, 1999).

3.13 shows the NaCl concentration dependence of the osmotic second virial coefficients of

the BPTI protein molecule with the experimental data and our calculations. The error

bars for the experimental data is from the experimental data (Farnum and Zukoski,

1999). And the result from six pair configurations to the Eq. (3.4) are used to indicate

the calculated data. The linear fit correlation coefficient between observed B2 and

calculated B2 is 0.9552. The variations of the calculated B2 from observed values are

relatively large at high concentrations of NaCl solution. This is because the calculated

B2 data above 1M of NaCl concentration is overestimated by our model and causes the

linear fit correlation to the experimental data worse. This is an evidence of the limitation

of our calculation model that shows the breakdown of the DLVO theory based on the

Debye-Hückel theory.
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The second virial coefficients of the lysozyme molecule are calculated by the same

manner as the calculations of the BPTI protein. The more common form of the second

virial coefficient, A2(ml · mol/g2) = B2(m3)NA/Mw
2 is used to report our calculated

results and compare with the experimental data (Guo et al., 1999). The averaged B2

is calculated by using Eq. (3.4) with six different pair configurations based on the

crystal space group operations of P222122. Figure 3.14 shows the experimental data and

calculated results of the second virial coefficients from the given solution conditions.

In Figure 3.14(A), the experimental and the calculated B2 are given as a function of

the concentration of the NaCl solution and other conditions remain constant at pH 4.2

and 25◦C. In general the correlation between the experimental and calculated results

are obvious, but we also can see the limitation of this model for the high concentration of

electrolyte solution, at 7%(w/v) of NaCl solution just as we have the same behavior on

the calculation of the BPTI protein. Except the highest concentration result, the linear

fit correlation between the observed and calculated data of B2 increases from 0.8282 to

0.8875.

The B2 behaviors as a function of the pH of solution in NaCl solution in Figure

3.14(B) shows a reasonable agreement between the experimental and calculated data

even though experiments show that slight increase at pH = 5.2. The experiments and

calculations are performed at 25◦C and under 2.0% NaCl concentration. The tempera-

ture dependence of B2 clearly shows that the calculated result has obvious correlation

with the experimental data. This dependence also has an exception on the low tem-

perature at 5◦C about the increment of B2 in the experiment. However, according

to the relation between observed B2 values and the solubilities of the lysozyme in so-

lutions (Gripon et al., 1997), the solubility of lysozyme shows clearly decrease as the

calculated B2 decreases at this condition. Temperature is the only variable in this rela-

tion, so the solution conditions such as pH, 4.2 and the concentration of salt(2.0% NaCl)

are remained as constants.
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Figure 3.14 The relations between the experimental B2 (Guo et al., 1999)
and the calculated B2 of the lysozyme protein with the given
solution conditions. The dependence of B2 on NaCl concen-
tration is shown on (A). The pH dependence is on (B). The
temperature dependence is on (C). And dependence upon am-
monium chloride concentration is shown on (D). The solid blue
lines with circles indicate the experimental data and the dashed
red lines with diamonds indicate our calculated results. The
linear fit correlation coefficients between the experimental data
and calculated results are 0.8282, 0.9636, 0.8981 and 0.9016 for
(A), (B), (C) and (D) respectively. To draw error bars, we use
the experimental data from the literature (Guo et al., 1999).
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Finally, in Figure 3.14(D), the experimental and calculated B2 are given as a function

of the concentration of the ammonium chloride solution. We also can see the limitation

of this model for the high concentration above 1M of NH4Cl solution. Except the highest

concentration result, the linear fit correlation between the observed and calculated data

of B2 increases from 0.9016 to 0.9904. This is done under pH 4.5 and 18◦C conditions.

3.5 Discussions

3.5.1 Temperature effect on the second virial coefficient of the lysozyme

The temperature of a solution affects the calculations of the second virial coefficients

of protein molecules both on the inverse Debye-Hückel screening length κ and the in-

tegrand in Eq. (3.2). In general, the decreased temperature raises κ and lower the

B2 and the relation between the temperature change and the B2 change is almost lin-

ear(see Figure 3.14(C)). Another temperature effect is represented by the change of the

dielectric constant of water which is the parameter in the dielectric continuum model

in our calculations. From 25◦C to 0◦C, the dielectric constant increases from 80 to

88 (Murrell and Jenkins, 1994) and according to Harvey and Lemmon this increase

also gives a decreasing effect on the second virial coefficients under low temperature,

T < 350K (Harvey and Lemmon, 2004). The predicted B2 from our calculations shows

the correct correlation to the above statement and observed data (Guo et al., 1999) of

lysozyme calculations. But the observed second virial coefficient shows unusual effect

by the temperature at 5◦C, it is increased not decreased by decreasing temperature but

our calculation still predicts the decrease of B2.

From the structural study of the lysozyme crystal, the unusual effect of tempera-

ture was seen at 280K structure (Kurinov and Harrison, 1995). The number of water

molecules under 4Å range, the distance from the lysozyme protein surface in this struc-

ture, are smaller than in either the higher temperature(T > 295K) or the lower temper-
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ature (T < 250K) structures. The less number of waters can cause the less interactions

between water molecules and atoms on the protein surface. This can be a possible reason

that the second virial coefficient at 5◦C is observed as an abnormal behavior considering

the overall trend with the temperature changes.

3.5.2 The limitation of model: Debye-Hückel Theory

In Figure 3.13 and Figures 3.14(A) and (D), the calculated B2 at high concentration

of salt of both sodium chloride and ammonium chloride are highly overestimated and

causes the linear fit correlations to the experimental values much worse. According to

our calculations this over-estimation occurs at the high concentration of an ionic solution

whose ionic strength is greater than 1M and the inverse Debye-Hückel screening length

κ is large (> 0.1). At such higher a concentration, the Debye-Hückel theory fails and

the DLVO theory which is based on the Debye-Hückel theory and the base of our model

follows. According to Fawcett, one important reason for the failure of this theory is

that it considers the only central ion has a size and ignores the size of the other ions

in the outside atmosphere (Fawcett, 2004). As a result, the thickness of the outside

ionic atmosphere is underestimated at high concentration of solutions. And in constant

volume condition the extra work involves when introducing the additional electrolyte ions

into the highly concentrated solution, but this work is neglected in this theory. Also

the structure of the solvent water is strongly affected by ion-solvent interactions. If the

concentration of ions increases the fraction of water molecules which are associated with

ions increases and the dielectric permittivity of this solution can decrease. So it should

be noted that change of the Debye-Hückel constant with the electrolyte concentration

should reflect the corresponding change of the dielectric constant of solvent, ε.

This limitation is more dominant especially when the ionic salt is changed to the

divalent ion such as magnesium bromide. Figure 3.15 shows the extreme case of the

failure of our model based on the Debye-Hückel theory. The observed second virial
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Figure 3.15 The MgBr2 concentration dependence of the osmotic second
virial coefficients of the lysozyme protein at pH 7.8 is shown
above. The solid black line with black colored circles are mea-
sured by the Static Light Scattering(SLS) (Guo et al., 1999),
and the solid red line with open circles are from the Self-Inter-
action Chromatography(SIC) (Tessier et al., 2002). The blue
solid lines with diamonds are our calculations. Both observed
results ofB2 become more positive at higher ionic strength. But
the calculated results do not show the increase of the second
virial coefficients at high ionic strength of magnesium bromide
solutions.



www.manaraa.com

69

coefficients of lysozyme show the minimum at the concentration of MgBr2 ∼ 0.3M ,

and start increasing as the ionic strength increases. Both experimental results from the

Static Light Scattering(SLS) (Guo et al., 1999) and the Self-Interaction Chromatogra-

phy(SIC) (Tessier et al., 2002) agree closely. The calculations predict the decrease of B2

as the concentration increases and agree with the experimental data only to the mini-

mum point from the experiments. But at high concentration of MgBr2, the calculations

only predict the second virial coefficients decrease to the large negative value and at this

point the inverse Debye-Hückel screening length κ is already greater than 0.1.

It is obvious that applying the extended Debye-Hückel theory for the dielectric con-

tinuum model to the high concentration limitation of our model can reduce the overesti-

mation of the second virial coefficients upon calculations and finally interpret the positive

increase behavior in the MgBr2 solution. The information of the frequency dependent

dielectric function (Song, 2009) can be used to extract the effective Debye screening

length and the corresponding effective dielectric function. This frequency dependent

dielectric function is already applied to the formulation of the solution to the dynamical

Poisson-Boltzmann equation with the system of linear equations of the boundary ele-

ment integrals which correspond to Eqs. (3.6), (3.7), (3.8) and (3.9) for the electrostatic

interaction and Eqs. (3.28), (3.29), (3.30) and (3.31) for the va der Waals interaction.

Another reason can be made that B2 values become more positive at high concen-

tration of MgBr2 solution. The binding affinity of Mg2+ ions to the surface of lysozyme

increases as the concentration of MgCl2 increases (Grigsby et al., 2000; Arakawa et al.,

1990). The extent of Mg2+ ion binding increases as the pH of the solution increases to the

isoelectric point of the protein(for lysozyme, 9.2) because the net positive charge on the

protein surface approaches zero at this point. The open active site residues of lysozyme

are Glutamic acid(E53) and Aspartic acid(D70) and both are negatively charged at this

pH condition and the overall net charge of lysozyme decreases from 13.3 at pH = 4.0

to 7.65 at pH = 7.8 under 23◦C which is the condition used in the experiments and
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our calculations. Due to the binding of Mg2+ divalent cations to the acidic residues

of lysozyme, the repulsive interactions between lysozyme molecules increase then cause

more positive second virial coefficients observed in both SLS and SIC experiments.

3.6 Concluding Remarks

The extended fast multipole method for two protein are implemented to solve the

system of linear equation of the solution of the linearized Poisson-Boltzmann equation

to calculate the effective interaction energy of both electrostatic and van der Waals

contributions. The traditional Boundary Element Method (Atkinson and Han, 2009)

implementation following Juffer et al. (Juffer et al., 1991) requires the computational

cost both memory and time with the order O((N + M)2) if the number of surface

elements from the first protein is N and from the second protein is M respectively. This

computational cost is the bottleneck for the comprehensive study on the interactions

between such large proteins. The two-body extended FMM algorithm to this problem

overcomes this computational cost problem to the order of O(N) if N is grater than M

for the double-tree FMM with the additional outer iteration method and the order of

O(N +M) for the single-tree FMM. The double-tree FMM is suitable at the relatively

large distance cases of interaction energy calculations and the single-tree method is good

at shorter distance than about the twice of the size of protein molecule. The accuracy

and performance of both methods can be controlled by adjusting the depth of trees, the

number of expansion terms and the tolerance factor of iteration (Yoshida, 2001).

The Bovine Pancreatic Trypsin Inhibitor(BPTI) protein is used to validate our model

for calculations of the osmotic second virial coefficients B2. The orientation dependence

of the interaction energy in the integral in Eq. (3.2) is simplified by using the pair config-

uration on the crystal space group operations and the integral is performed by the simple

distance dependence with six pair configurations of interaction energies. The calculated
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B2 is generally agreed with observed values with changes in the NaCl concentrations.

This model is also applied to calculate the second virial coefficients of lysozyme molecules

under various solution conditions. Salt concentration dependence(sodium chloride, am-

monium chloride), pH and temperature dependence and salt effects which are all im-

portant factor for the solubilities and crystal growing of proteins (George et al., 1997;

Rosenbaum and Zukoski, 1996; Veesler et al., 1996) are carried and our calculation re-

sults show the evidence that our model is suitable to describe behaviors of the osmotic

second virial coefficients of proteins under these solution conditions.

In the present work, this model can break down when calculating the second virial

coefficient at high concentration of ionic salts and with multivalent ionic salts such

as Mg2+ ion. Our results show the overestimation of B2 when the ionic strength is

greater than 0.1M in general and do not show the repulsive effect of the magnesium ion

upon binding to the negatively charged amino acid residues, which causes the positive

increase of B2 even if the ionic salt concentration increases. This is the evidence that

the limitation of the DLVO theory for the interaction of two particle base on the Debye-

Hückel theory. Introducing the extended Debye-Hückel theory (Song, 2009) into this

model can overcome such a limitation of high ionic strength problem.
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CHAPTER 4. The phase diagram calculations of protein

4.1 Introduction

The phase diagram and protein crystallization are related directly through the loca-

tion of the solubility curve. Crystals can only form in supersaturated solutions. Thus,

knowing where the solubility curve is located is important to help to grow crystals for

X-ray structure determination. The phase diagram is also important because it can

describe the information about the interactions among all the components including the

proteins and salts in the solutions. In the presence of liquid-liquid phase separation,

the effective interactions between the protein molecules are attractive (Rosenbaum and

Zukoski, 1996) and this attraction is a necessary condition for crystallization (George

et al., 1997). The enthalpies and entropies of the proteins in the liquid and solid phases

can be determined from the liquid-liquid coexistence curve and the solubility curve re-

spectively (Petsev et al., 2003). Also the study of a phase diagram can help to find the

possibilities to predict the suitable conditions under which proteins can be crystallized

or to reduce the number of possible trials of finding the optimal solution conditions.

The effective interaction energies between two protein molecules as we discussed in

chapter 3 are useful to predict the phase diagram with the given solution conditions.

As a first step of the determination of a phase diagram, the anisotropic interaction

potentials between two protein molecules should be calculated to obtain the free energy

differences between two phases (Vega et al., 2008). In this chapter, we will present a

model to calculate the pair interaction potential which is based on our anisotropic patch
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model (Kim and Song, 2010) and how to reduce the computational effort to calculate it.

4.2 The anisotropic patch model

In the canonical ensemble the Helmholtz free energy A is given by the following

equation (McQuarrie, 1976),

A = −kBT ln(Q(N, V, T )) = −kBT ln
(
qN

N !

×
∫

exp [−βU(r1, . . . , rn,Ω1, . . . ,Ωn)d1 . . . dN ]
)
, (4.1)

where β = 1/(kBT ), U is the intermolecular energy of the whole system, q is the

molecular partition function and di is the abbreviated form of dridωi where dri =

dxidyidzi (Vega et al., 2008). The angle, Ωi defines the orientation of the molecule i

and the location of molecule i is given by the Cartesian coordinates xi, yi, zi for each

molecule located at ri.

The total potential in Eq. (4.1) can be written as a sum of the two-body interaction

terms that depend on the center-to-center distance rij between two particles and their

relative direction of orientations Ωi (Noya et al., 2007).

U(r1, . . . , rn,Ω1, . . . ,Ωn) =
N−1∑
i=1

N∑
j=i+1

V (rij,Ωi,Ωj). (4.2)

The interaction between two particles is described by a potential with an isotropic re-

pulsive potential core and an anisotropic angular dependent potential,

V (rij,Ωi,Ωj) =

 VLJ(rij)

VLJ(rij)Vang(rijΩi,Ωj)

rij < σLJ

rij ≥ σLJ

, (4.3)

where VLJ(r) is the Lennard-Jones potential,

VLJ(r) = 4ε

[(σLJ
r

)12

−
(σLJ
r

)6
]
, (4.4)
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Figure 4.1 Schematic illustration shows the geometry of the interaction be-
tween two particles. Each particle has four patches in 2D space
arranged evenly with the directions indicated by patch vectors,
pi. The inter-particle vector, rij defines the index of the patch in
each particle used in the Eq. (4.5) based on the closest distance
to this vector (Noya et al., 2007).

and ε is the depth of the pair potential well. According to Noya et al, its angular

dependence of attractive potential is modulated by a product of Gaussian functions

whose center is at the position of each patch (Noya et al., 2007),

Vang(rij,Ωi,Ωj) = exp

(
−
θ2
kmin,ij

2σ2

)
exp

(
−
θ2
lmin,ij

2σ2

)
, (4.5)

where σ is the standard deviation of the Gaussian, θkmin,ij is the angle between patch k

on molecule i and the inter-particle vector rij and kmin is the patch which minimizes the

magnitude of this angle. The magnitude of the interaction depends on the magnitude of

the patch angle. In Figure 4.1, a schematic illustration of this patch model(four patches

on each spherical surface in two dimensional space) is shown for the interaction of two

particles (Noya et al., 2007).
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Figure 4.2 Schematic illustration shows the geometry of the interaction be-
tween two protein molecules with our patch model. Each pro-
tein molecule is discretized by a number of surface elements and
rotated to the direction of a patch Ωi(j) on protein 1(2). The in-
ter-particle vector, ri to rj lies on two patch vectors indicate the
center-to-center displacement of two protein molecules. The pair
of patch indices, (i, j), finally represent the relative orientations
of two protein molecules.

4.3 A residue level patch model for proteins

The simple patch model based on the spherical particle is not a good approxima-

tion for proteins to define the interactions between two protein molecules because of

the complexity of the geometry of the protein molecules. One possible way to capture

the realistic geometry of the protein surface is to construct a patch model based upon

the boundary elements used in our residue level protein-protein interaction model. Dis-

cussed in chapter 3, the electrostatic and the van der Waals interaction energies can

be calculated with different center-to-center separation distances and different orienta-

tions. Thus, we can calculate the pair interaction potential by arranging the protein

molecule with the patch vector which is the vector from the center of a protein molecule

to the designated boundary surface element along with the inter-particle vector whose

magnitude is the center-to-center distance between two proteins(see Figure 4.2).
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To represent realistic anisotropic interactions between two proteins, we have to con-

sider a large number of patches, thus a high cost. To overcome this problem, we should

think about two things. First, defining a surface of a protein molecule should be done

by using a small number of triangles of the surface tessellation. Second, a method to

reduce the number of calculations, both the electrostatic pair interactions and the van

der Waals pair interactions with a patch model should be considered to reduce the over-

all costs. We propose an interpolation strategy to reduce the number of evaluations

between various patches of two proteins.

To discretize the molecular surface of a protein molecule, we use the MSMS (Sanner,

1996). To achieve the first improvement to reduce the number of pathes, we need to

discretize the molecular surface of a protein molecule using as small number of triangles

as possible but maintaining the anisotropy of molecule. This can be done by controlling

the parameters in MSMS. Using the minimum density of the surface tessellation and

maximum size of the probe radius to define the molecular surface, we can get the smallest

number of surface patches. For the calculations, 248 patches can be obtained to calculate

the pair interaction potentials between two BPTI proteins and 780 patches are used to

capture the pair interaction potentials between two lysozyme proteins.

Even though a small number of surface elements on the protein surface are generated,

the number of pair interactions between two protein molecules is still very large. For

example, the number we need to compute for the BPTI is at least 248 × 248. It is

too time consuming to compute all the pair interactions. So the method designed to

reduce the number of pair interaction calculations is to interpolate the functions of the

pair interaction potentials based on the patch vectors which represent the orientations

of the protein molecules. This can be done using a similar strategy as presented in

chapter 3. The second virial coefficients are calculated using a small number of pair

configurations of the two proteins from crystal space group operations. Calculations

of only six pair orientations were enough to represent the good correlations with the
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experimental values of the second virial coefficients from the small BPTI protein to

the relatively large lysozyme protein even though the calculation of the second virial

coefficient in Eq. (3.2) requires the contributions of all the possible pair interaction

energies.

Starting number of pair interaction potentials in this patch model is six in BPTI

protein calculations and their orientations are from the crystal space group, P21212

operation(see Figures 3.8 and 3.9) and is also six in lysozyme protein calculations and

their orientations are from the crystal space group, P212121 operation(see Figures 3.10

and 3.11). The indices of the patches from the first method are assigned to the six

pair interactions from the crystal group operations. In 780 patches of the lysozyme

surface, the six computed pair interactions have the pair indices (i, j) as (604, 229),

(218, 401) and (62, 175) for AB, AC and AD pairs respectively and (76, 125), (503, 288)

and (722, 373) for BA=AB′, CA=AC′ and DA=AD′ respectively, where the symbol “′”

means the negative direction of the inter-particle vector.

To get an interpolated function of the pair interaction potential as a function of the

patch index i, j and the center-to-center distance R, F (i, j;R), calculated data sets of

the pair interaction potentials should be fitted as function forms. We use the non-linear

least squares method (Kelley, 1999) to fit data sets of the pair interactions separated

into the electrostatic interaction potentials and van der Waals interaction potentials.

For the non-linear least square fitting, we use the trust region algorithm (Byrd et al.,

1987) and the power law (Weisstein, 2010) to get a function form as F = a ·Rb+c. Table

4.1 shows the coefficients of these functions of the van der Waals interaction potentials

between two lysozyme proteins after the non-linear least square fitting with trust region

method.

To get pair interaction functions for each electrostatic and van der Waals interaction

potential with all the orientations (i, j), the pair potentials F (i, j;R) are interpolated

from the six fitted functions. The non-linear squares fitting (Kelley, 1999) with trust



www.manaraa.com

78

Table 4.1 Coefficients of the fitted function from the six computed pair in-
teractions of the van der Wassls interaction potentials between
two lysozyme proteins. The pairs from crystal operations are
converted to the patch index (i, j). And a, b and c are the coef-
ficients of F = a ·Rb + c where R is the center-to-center distance
between two proteins. R2 values of fitting are also shown.

i j a b c R2

604 229 -4.79E+14 -9.002 -1.376 0.9732
218 401 -4.79E+14 -9.002 -1.376 0.9732
62 175 -4.88E+14 -8.831 -1.261 0.9821
76 125 -4.88E+14 -8.831 -1.261 0.9821
503 288 -4.62E+14 -9.020 -1.683 0.9888
722 373 -4.62E+14 -9.020 -1.683 0.9888

region method (Byrd et al., 1987) on 2D surface can be used to interpolate the coefficients

a, b and c. But after fitting the predicted coefficients b can make the fitted functions

worse to represent the pair interactions because the predicted coefficients of power b

may have wide ranges of values whereas the coefficients b from the six computed pairs

have relatively constant values. So we can assume that the power coefficient of the

fitted function, b, is remained as an averaged constant. After using the constant power

b = −8.951, we have the following fitted coefficients from six computed pairs of the

van der Waasl interaction potential(Table 4.2). Considering small changes of the fit

correlation coefficients, R2, our assumption of the constant power coefficient b is valid.

After applying the 2D surface fitting with the non-linear squares fitting and trust

region method, we have the following form of the coefficients a and c for the pair inter-

action potentials F (i, j : R) = a ·R−8.951 + c for the van der Waals interactions between

two lysozyme proteins,

f(i, j) = p00 + p10 × i+ p01 × j + p20 × i2 + p11 × i× j + p02 × j2 (4.6)

where pkl(k, l = 1, 2) are the fitted parameters on the quadratic polynomial fitting. This

2D surface fitting can be done to all the coefficients a and c for both electrostatic and van

der Waals interaction potentials on the patch model. The fitted surfaces are drawn in
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Table 4.2 Coefficients of the fitted functions from six computed pair in-
teractions of the van der Wassls interaction potentials with the
constant power coefficient b. The pairs from crystal operations
are converted to the patch index (i, j). And a, b = −8.951 and c
are the coefficients of F = a ·Rb + c where R is the center-to-cen-
ter distance between two proteins. R2 values of fitting are also
shown.

i j a c R2

604 229 -3.97E+14 -1.373 0.9730
218 401 -3.97E+14 -1.373 0.9730
62 175 -7.61E+14 -1.270 0.9830
76 125 -7.61E+14 -1.270 0.9830
503 288 -3.59E+14 -1.679 0.9886
722 373 -3.59E+14 -1.679 0.9886

Figures 4.3(a) and 4.3(b) for coefficients a and c respectively. The obtained parameters

a and c in the function for both electrostatic and van der Waals interaction potentials

between two lysozyme molecules are listed in Table 4.3.

4.4 Calculation of the phase diagram of a protein

Once the pair potential of the anisotropic interaction between two protein molecules

are computed, the total potential in Eq. (4.2) can be obtained. And this can be used

in Monte Carlo(MC) simulations to calculate the equation of state for the solid and

the liquid phases. And the thermodynamic integration is followed to obtain free energy

differences between two phases (Frenkel and Smit, 2002). The coexistence line can be

obtained using Gibbs-Duhem integration method introduced by Kofke (Kofke, 1993a,b).

This coexistence line is obtained by integrating the Clausius-Clapeyron equation. As

a first step of this procedure, we developed a method to calculate the anisotropic pair

interaction potentials between two protein molecules of both the electrostatic contribu-

tions and the van der Waals contributions using a small number of different orientation

pairs. In our future work we will apply our results to the calculation of the lysozyme
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(a) Coefficient a (b) Coefficient c

Figure 4.3 2D surface non-linear least square fitting for the coefficients a
and c of val der Waals pair interaction potentials between two
lysozyme protein molecules. Axis x and y stand for the patch
index i and j.

Table 4.3 Fitted parameters after applying the 2D non-linear square fitting
on the coefficients of fitted functions from six computed pair inter-
actions of electrostatic and van der Waals interaction potentials
between two lysozyme proteins with the constant power coeffi-
cient b. For electrostatic potentials, the constant b = −4.105
is used to fit the other coefficients of F = a · Rb + c where R
is the center-to-center distance between two proteins. The term
“elec” means electrostatic interaction and “vdw”, van der Waals
interaction.

parameter a(elec) c(elec) a(vdw) c(vdw)
p00 3.66E+08 -6.681 -9.00E+14 -1.003
p10 -7.30E+05 0.02366 1.73E+12 -0.0007
p01 -1.37E+06 0.01843 -2.43E+10 -0.00218
p20 534.1 -4.63E-05 -1.52E+09 3.85E-06
p11 561.2 4.83E-05 -4.44E+08 -9.15E-06
p02 3102 -7.03E-05 1.54E+09 7.92E-06
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Figure 4.4 Phase diagram for lysozyme protein with 3% NaCl at pH= 4.5
in 0.1M NaAc buffer (Muschol and Rosenberger, 1997).

phase diagrams which are known experimentally(Figure 4.4) (Muschol and Rosenberger,

1997).
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CHAPTER 5. Implementation of the Fast Multipole Method

5.1 Introduction

The electrostatic and van der Waals interactions between protein molecules in chap-

ters 2, 3 and 4 are estimated from the linearized Poisson-Boltzmann (PB) equation

where the realistic shape of protein molecules are considered. The most popular method

for solving this PB equation is the finite difference method (FDM). But it is obviously

difficult since a huge grid space is needed for FDM to get a reasonable accuracy in the

dielectric media with proteins as it used to discretize a three dimensional volume. In

contrast to the FDM method, boundary element method (BEM) discretizes only the

boundary of the protein surface which is two-dimensional. Because of this reduction

of dimensionality, BEM can be expected to be advantageous in large-scale problems.

The application of this method has been limited to the relatively small proteins, be-

cause building up the coefficient matrix in BEM takes the full matrix space (usually

not sparse) which is O(N2), where N is the number of unknowns which is the number

of surface elements in BEM. The operation number to solve the linear system requires

even more operations up to the order of O(N3) using the conventional direct solver such

as the Gaussian elimination. In the study of protein molecules, to get a reasonable

accuracy of the solution of PB equation comparing with the analytic solution, such as

Eq. (A.13), N should be more than tens of thousands for the average size of proteins

and even the small protein such as BPTI which has only 58 amino acid residues re-

quires several thousands of discretized surface elements and the memory cost already
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exceeds the order of Giga-Bites (GB) to more than ten GBs. However, the appearance

of fast multipole method (FMM) dramatically changed the limitations for BEM. The

use of FMM together with iterative solvers such as conjugate gradient (CG) method and

generalized minimal residual (GMRES) method has been shown to reduce the memory

requirement to O(N) and the operation count to O(N). Thus, FMM finally enables us

to apply BEM to the large-scale problems such as protein-protein interactions. FMM

in BEM was first introduced by Rokhlin (Rokhlin, 1985) for integral equations of two-

dimensional Laplace equations and then developed by Greengard (Greengard, 1988) for

pairwise force calculation in many body problems with Coulombic potential. It is further

developed to achieve the order of O(N) (Greengard and Rokhlin, 1997). In this chapter,

we will show how this FMM algorithm can be applied to the solution of PB equation in

protein-protein interaction energy calculations.

5.2 Formulation of the Fast Multipole Method

The fast multipole method (FMM) can speed up the matrix-vector multiplication on

the following particular type of problem,

s(xj) =
N∑
i=1

αiφ(xj − xi), {sj} = [Φji] {ai} . (5.1)

The solution on target xj is evaluated by summing up the matrix (Φji whose elements

are defined by the potential function φ(xj−xi) between source xi and its target xj) and

vector (ai) products. Above sum of matrix-vector products requires O(MN) operations

where the total number of the surface index j is M . Applying the FMM in Eq. (5.1)

can reduce this evaluation to O(M +N) operations. The basic idea how this algorithm

reduces the computational cost is described here.

The matrix element in the form of Eq. (5.1) is the evaluation of a function between

two nodes, so called source and target points which typically represent the discretized
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surface elements of a protein in our problem. The simplest example of the functions to

satisfy this condition is the solution of the Laplace equation, its Green’s function. The

Green’s function on the Cartesian coordinates can be expanded to the form of Eq. (5.1)

using the Spherical Harmonics (Abramowitz and Stegun, 1964). By using the equality

of Green’s function, following identity can be obtained by shifting the geometric center

from O to O′ (see Figure 5.1),

1

|x− y|
=
∞∑
n=0

n∑
m=−n

Rn,m(
−→
Oy)Sn,m(

−→
Ox) =

∞∑
n=0

n∑
m=−n

Rn,m(
−→
O′y)Sn,m(

−−→
O′x), (5.2)

where Rn,m and Sn,m are the solid harmonics defined as,

Rn,m(
−→
Oy) =

1

(n+m)!
Pm
n (cosα)eimβρn,

Sn,m(
−→
Ox) = (n−m)!Pm

n (cos θ)e−imφ
1

rn+1
. (5.3)

If the shifted origin O′ goes closer to the source point y, the number of summation

in Eq. (5.2) to make this solution converged is reduced from more than 100s to less

than 10s with the designated accuracy with about 4 to 6 significant figures (Rokhlin,

1985). Reducing the number of summation terms is the starting point of speed up during

matrix-vector product operations in FMM.

This identity also can be applied to the gradient form of the function like,

∇ny

1

|x− y|
=
∞∑
n=0

n∑
m=−n

∇nyRn,m(
−→
Oy)Sn,m(

−→
Ox) =

∞∑
n=0

n∑
m=−n

∇nyRn,m(
−→
O′y)Sn,m(

−−→
O′x),

(5.4)

where Rn,m and Sn,m are the solid harmonics defined in Eq. (5.3) and the normal gradient

on the target point x also has the same identity. This additional identity shows that

the FMM can be applied to many aspects of physical problems involving simple solution

like Eq. (5.2) but also like Eq. (5.4). If any solution of the problem can be expanded to

the sum of series expansions and can have the identity between origin shifts, the FMM

can be applied and speeds up the matrix-vector product operations.
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O 

x 

y 

O’ 

x 

y 

Figure 5.1 Schematic illustration showing the starting idea of the fast mul-
tipole method (FMM). Evaluation of the given function is de-
scribed the red arrow between source point y and target point
x. The translation of geometric center from O to O′ is defined.

Above example is the minimization of computational cost only between two evalua-

tion points. To keep minimum number of summation terms, minimization of the distance

between source point and shifted origin is required. But one minimization of distance

for one source point can be maximization for another point on the protein surface. So

we need to introduce multiple origins and consider only the interactions between source

points and a single origin point within the designated distance. To reduce computational

cost and to maintain accuracy, multiple layers of expansion origins are required. And

each origin also carries the information of the sum of coefficients in expansions from its

source points, we can call them “children”, and transfer this information to the nearest

origin, “parent” (Figure 5.2). Detail formulations for series expansions of the functions

and translations of coefficients will be described in next section about the application of

FMM to the PB equation.

There is a practical problem how we can define multiple layers of expansion origins

and the correlations between children expansion centers and parent centers and assign

them to the nearest surface elements either as source or target points. In two-dimensional

space, the surface domain is positioned inside the biggest rectangular box (called level =

0 box) and this rectangular box is divided to 4 smaller boxes with the same size (level =
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Figure 5.2 Schematic illustration showing the conversion of the general
BEM to the multi-level FMM (MLFMM). The order O(N +M)
method in BEM is re-designed to the multi-level FMM by intro-
ducing the multiple layers of expansion origins. The translations
of expansion coefficients from source points are indicated by S|S.
S|R translations is the evaluation of the function from source to
target points to evaluate the matrix-vector product. The trans-
lations of expansion coefficients between target points are also
indicated by R|R. This figure was taken and re-assembled from
Gumerov and Duraiswami (Gumerov and Duraiswami, 2005).
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1) and this procedure is repeated to small enough box size so that individual discretized

surface elements are inside the box. The number of levels which decides the sizes of

the boxes at each level depends on the balance between the expected accuracy and

computational cost because the smaller size of the boxes at the finest level and the larger

number of expansion coefficients (the number of summation terms) can guarantee the

accuracy but with more memory and operation costs. The relations between rectangular

boxes among the levels are described by the tree structure and in 2D we can call this

tree as a “quad-tree” because each box always has four children. In three dimensional

space, each cubic cell has eight children and therefore the “oct-tree” structure should be

built to store all the information about the cell-to-cell relations and the translations of

expansion coefficients. Figure 5.3 shows how the indices of the surface elements can be

stored in the tree structure in two-dimension.

5.3 Application of the Fast Multipole Method

Eqs. (2.4), (2.5) (the electrostatic interaction) and Eqs. (2.21), (2.22) (the van

der Waals interaction) in chapter 2 and Eqs. (3.6), (3.7), (3.8), (3.9) (the electrostatic

interaction) and Eqs. (3.28), (3.29), (3.30), (3.31) (the van der Waals interaction) in

chapter 3 can be described as systems of linear equations. For example, Eqs. (2.4) and

(2.5) in chapter 2 are

1

2

(
1 +

ε2

ε1

)
ϕ(r0) +

∫∫
∑ L1(r, r0)ϕ(r)dr +

∫∫
∑ L2(r, r0)

∂ϕ(r)

∂n
dr

=
N∑
i=1

{qiF (ri, r0) + ~µi · ∇F (ri, r0)} /ε1, (5.5)

1

2

(
1 +

ε1

ε2

)
∂ϕ(r0)

∂n
+

∫∫
∑ L3(r, r0)ϕ(r)dr +

∫∫
∑ L4(r, r0)

∂ϕ(r)

∂n
dr

=
N∑
i=1

{
qi
∂F

∂n0

(ri, r0) + ~µi · ∇
∂F

∂n0

(ri, r0)

}
/ε1, (5.6)
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Surface index assignment 

to the leaf cell 

Cell descretization and storing 

cells into the quad-tree  

Figure 5.3 Schematic illustration shows how the boundary surface elements
are assigned to the nearest leaf cell (leaf cell is the finest cell and
has no children) and how whole domain is discretized to the
multi-level rectangular cells. The indices of surface elements are
stored into the leaf cells and relations between cells in differ-
ent levels such as parent-children relations are stored into the
quad-tree in two-dimensional space. This figure was taken and
re-assembled from Yoshida (Yoshida, 2001).
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where L1, L2, L3 and L4 are defined in Eqs. (2.6), (2.7), (2.8) and (2.9). All Ls are

functions between source r0 and target r located on the surface whose number is N .

Thus, Ls are N × N matrices. Discretizing the functions ϕ(r0), ∂ϕ(r0)
∂n

and the right

hand side of the above equations yields the following linear system with simplifying

notations ϕ(r0) to ϕ0 and ∂ϕ(r0)
∂n

to ϕ1 and the right-hand side F and its normal gradient

to F0 and F1, 1 0

0 1


ϕ0

ϕ1

−
L1 L2

L3 L4


ϕ0

ϕ1

 =

F0

F1

 , (5.7)

where the size of vectors is N and the size of matrices is N ×N .

(I − L)A = B, (5.8)

where I is the identity matrix with the size of N2 and A, B are single column vectors

with the size N . This form also can be applied to protein interaction calculations with

the size 2N in chapter 3, the number of surface elements to discretize the protein surface

of amino acid residues. A and B also can be N × N (2N × 2N in chapter 3) matrices

for the reaction field of the van der Waals energy calculation.

All matrix elements consist of the sum of the solutions of Coulombic interactions and

Screened Coulombic interactions. For example, the matrix element, L2, are given by,∫
Sy

(
∂F (x− y)

∂ny
− ε2

ε1

∂P (x− y)

∂ny

)
φ(y)dSy, (5.9)

where F and P are defined in Eqs. (2.10) and (2.11) in chapter 2.

Thus, we need to solve the following matrix
(∫

Sy

∂F (x−y)
∂ny

dSy

)
and vector (φ(y)) for

example. The key point for solving this linear system with the efficiency is to accelerate

the matrix-vector multiplications during iterations in the iterative linear equation solver,

such as GMRES. This can be done by introducing the fast multipole method, FMM.

Implementation of FMM is described by followings.

The multipole moment expansions for the Coulombic interaction (y to O in Figure

5.4) are given by (Yoshida, 2001),
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Figure 5.4 Schematic illustration showing the hierarchical rectangular
boxes of the fast multipole method in two dimensional space
for convenience. The largest box represents the highest level,
level-zero, and the smallest boxes are in the finest level, lev-
el-three in this picture. The lightly shaded level-two boxes are
in the far field list from the target point x. The light blue boxes
are in the interaction list (up to 189 boxes in three dimension)
which translates the multipole expansion to the local expansion
(M2L translation, x0 to x0 arrow). The arrows O to O′ and x1

to x0 indicate multipole to multipole (M2M) and local to local
translation (L2L) respectively. Finally the dark blue boxes (up
to 27 boxes in three dimension) are the neighbor boxes. The
interaction between neighbors including the self interactions can
be calculated by the direct BEM solver (Lu et al., 2007).
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∫
Sy

∂F (x− y)

∂ny
φ(y)dSy =

1

4π

p∑
n=0

n∑
m=−n

Sn,m(
−→
Ox)Mn,m(O), (5.10)

where the Green’s function F (x− y) = 1
|x−y| and the multipole moment coefficients are

Mn,m(O) =

∫
Sy

∂Rn,m(
−→
Oy)

∂ny
φ(y)dSy (5.11)

and Rn,m and Sn,m are the solid harmonics defined as:,

Sn,m(
−→
Ox) = (n−m)!Pm

n (cos θ)e−imφ
1

rn+1
, (5.12)

Rn,m(
−→
Oy) =

1

(n+m)!
Pm
n (cosα)eimβρn. (5.13)

The multipole moment expansions for the screened Coulombic interaction can be written

as, ∫
Sy

e−κ|x−y|

|x− y|
φ(y)dSy =

2κ

π

p∑
n=0

(2n+ 1)kn(κr)

×
n∑

m=−n

Sn,m(θ, φ)Mn,m(κ,O), (5.14)

where the multipole coefficients,

Mn,m(κ,O) =

∫
Sy

in(κρ)Rn,m(α, β)φ(y)dSy (5.15)

and in(κρ) and kn(κr) are modified spherical Bessel and modified spherical Hankel func-

tions are defined in terms of Bessel function (Abramowitz and Stegun, 1964).

Iν(r) = i−νJν(ir), (5.16)

Kν(r) =
π

2 sin νπ
[I−ν(r)− Iν(r)] , (5.17)

in(r) =

√
π

2r
In+1/2(r), (5.18)

kn(r) =

√
π

2r
Kn+1/2(r). (5.19)
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and Rn,m(α, β) and Sn,m(θ, φ) are the spherical harmonics are defined as,

Sn,m(θ, φ) = Rn,m(θ, φ) =

√
(n−m)!

(n+m)!
Pm
n (cos θ)eimφ, (5.20)

where the upper bar represents the complex conjugate of the harmonics. The integrals

in Eq. (5.10) and Eq. (5.14) can be evaluated with the local expansion coefficients as

follows, ∫
Sy

∂F (x− y)

∂ny
φ(y)dSy =

1

4π

p∑
n=0

n∑
m=−n

Rn,m(−−→x0x)Ln,m(x0), (5.21)

∫
Sy

e−κ|x−y|

|x− y|
φ(y)dSy =

2κ

π

p∑
n=0

(2n+ 1)in(κr)
n∑

m=−n

Sn,m(θ, φ)Ln,m(κ,x0). (5.22)

The expression of the local expansion coefficients (x0 to x in Figure 5.4) for the Coulom-

bic interaction can be written as following (Yoshida, 2001),

Ln,m(x0) =

p∑
n′=0

n′∑
m′=−n′

(−1)n
′
Sn+n′,m+m′(

−−→
Ox0)×Mn′,m′(O). (5.23)

The above procedure is called, “the multiple to local translation (simply M2L trans-

lation)” (O to x0 in Figure 5.4). The equation for the M2L translation of screened

Coulombic interaction can be derived by using the properties (Yoshida, 2001) of the

translational equalities in the spherical Bessel and Hankel functions (Epton and Dem-

bart, 1995) and applying them to the modified spherical Bessel and Hankel functions.

The final expression of the M2L translation is given by,

Lmn (κ,x0) =

p∑
n′=0

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n′+n−l:even

(2n′ + 1)

×Wn′,n,m′,m,lkl(κ,
−−→
Ox0)× Sl,−m−m′(

−−→
Ox0)Mn′ ,m

′(κ,O), (5.24)

where Wn′,n,m′,m,l is written by the following equation with the Wigner-3j symbol (Mes-

siah, 1962),

Wn,n′,m,m′,l = (2l + 1)in
′−n+l ×

n n′ l

0 0 0


n n′ l

m m′ −m−m′

 . (5.25)
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The oct-tree structure source code developed by Song (Chew et al., 2001) is used

to define the ‘interaction list’, which has a key role to connect multipole expansion

coefficients to local expansion coefficients, the M2L translation. At the finest level, the

interaction between elements in the nearest neighbor, called the near field interaction,

can be calculated by the direct boundary element solver with the collocation method

from Atkinson and coworkers (Atkinson and Han, 2009) and the interactions from the

far field elements, the multipole moment expansion coefficients are translated to the

higher level expansions, called “the multipole to multipole translation (M2M)” (O to

O′ in Figure 5.4). Once M2L translations are computed in the higher level of tree

structure, they should be translated to local expansions in the lower level, finally to

local expansions in the finest level in order to evaluate the integrals and the matrix-

vector multiplications. This process is called “local to local translation (L2L)” (x1 to x0

in Figure 5.4). The equations for M2M and L2L translations for Coulombic and screened

Coulombic interactions are given below,

Mn,m(O′) =
n∑

n′=0

n′∑
m′=−n′

Rn′,m′(
−−→
O′O) ×Mn−n′,m−m′(O), (5.26)

Mm
n (κ,O′) =

∞∑
n′=0

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n′+n−l:even

(2n′ + 1)

× (−1)m
′
Wn,n′,m,m′,lil

(
κ,
−−→
O′O

)
× Sl,−m−m′

(
κ,
−−→
O′O

)
Mn′,−m′(κ,O), (5.27)

Ln,m(x0) =
∞∑

n′=n

n′∑
m=−n′

Rn′−n,m′−m
(−−→x1x0

)
× Ln′,m′(x1), (5.28)

Lmn (κ,x0) =
∞∑
n′=0

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n′+n−l:even

(2n′ + 1)

× (−1)mWn′,n,m′,−m,lil
(
κ,−−→x1x0

)
× Sl,m−m′

(−−→x1x0

)
Ln′,m′(κ,x1). (5.29)
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The restarted generalized minimal residual method (Barrett et al., 1994) is used to

solve the linear equations and we modified the code computing matrix-vector products

to make an interface to FMM. The comparison between the direct BEM solver and our

FMM solver in computational cost is shown on Figure 5.5 and Figure 3.6 for single

protein solver and double protein solver respectively. According to these figures our

FMM code has a linear dependence on the number of elements N with the maximum

number of levels logN , finally it follows O(N lnN) algorithm.

5.4 Algorithm and estimation of computational cost

We describe the general algorithm of the fast multipole method in two-dimensional

space and predict the computational cost based on this system for the simplicity of

understanding.

Step 1 Discretization:

Discretize the given surface domain to the boundary elements, Sy, as in the tradi-

tional BEM solver. To compare the computational cost between traditional BEM

and FMM-BEM, we use the number of elements as N = 1000, for example.

Step 2 Construct the tree structure (quad-tree in 2D, oct-tree in 3D):

Define a rectangular box which holds the surface elements in it and this is the

level 0 cell. And divide this cell into 4 equal rectangular boxes and call them

the cells of level 1 and children of level 0 cell. Repeat this to the maximum level

which is chosen to get the designated accuracy and cost. We need to consider

the following parameters. The number of unknowns is N , the maximum number

of surface elements in a leaf cell is M and the maximum number of terms in the

summation of expansions is p. So the total number of leaves is N/M and the level

of this quad-tree is log4(N/M). See Figure 5.3
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Step 3 The Multipole moment expansions:

Compute the multipole moment expansions following Eqs. (5.10) and (5.14) for

Coulombic interaction and screened Coulombic interaction in the lowest level of

cells (leaves). This procedure takes N/M(the number of leaves)

×M(the number of elements in one leaf)× p(the summaation terms) = O(pN) =

5000, for example.

Step 4 The Multipole to Multipole (M2M) translations:

From the cells of the lowest level, translate the multipole moment expansion co-

efficients to the center of the parent’s cell by using Eq. (5.26) and Eq. (5.27) for

Coulombic interaction and screened Coulombic interaction respectively. Repeat

this to the level = 3. This procedure takes p2(the operation cost)

× 4N/3M(the number of cells of translations in all levels)

= O(4p2N/3M) = O(3333) from the given numbers of parameters.

Step 5 The Multipole to Local (M2L) translations:

If the two cells in the same level are in the “interaction list” according to the tree

structure (see Figure 5.4), the multipole moment coefficients can be translated to

the target cell to evaluate the given integral to compute matrix-vector products by

using Eq. (5.3) and Eq. (5.24) for Coulombic interaction and screened Coulombic

interaction respectively. This procedure is repeated to the level = 2 to translate

all the possible interactions from source elements to their targets. The cost of M2L

translations is

p2(the operation cost)× 27(the number of the cells in the interaction list)

× 4N/3M(the number of cells in translations) = O(36p2N/M) = O(90000) from

the given numbers of parameters.

Step 6 The Local to Local (L2L) translations:

If the M2L translations are computed on the non-leaf cells, the translated coeffi-
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cients are translated to their children. From the cells in the highest level (starting

from level = 2), translate the local expansion coefficients to the center of children

cells by using Eq. (5.28) and Eq. (5.29) for Coulombic interaction and screened

Coulombic interaction respectively. Repeat this to the parent cells of cells in the

lowest level. This procedure takes p2(the operation cost)

× 4N/3M(the number of cells of translations in all levels)

= O(4p2N/3M) = O(3333) from the given numbers of parameters.

Step 7 The local expansions (integral evaluations):

Compute the local expansions following Eq. (5.21) and Eq. (5.22) for Coulombic

interaction and screened Coulombic interaction respectively from the cells in the

lowest level (leaves) to evaluate the integrals to compute matrix-vector products.

This procedure takes

N/M(the number of leaves)×M(the number of element in one leaf)

× p(the summation terms) = O(pN) = 5000, for example.

Step 8 The direct computations (integral evaluations):

If the source and target elements are assigned to adjacent cells at all leaf cells, the

given integral should be computed by using the traditional direct solver of BEM.

The cost to evaluate the integrals to compute matrix-vector products is

N/M(the number of leaves)× 9(the numeber of adjacent cells)

×M2(the cost of direct computation) = O(9MN) = 90000 with using the given

parameters.

So the total cost from the FMM on the two-dimensional boundary element problem

is

2O(pN) + 2O(p24N/3M) +O(27p24N/3M) +O(9MN) ∼ O(N), (5.30)
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with the given parameters as an example,

2×O(5000) + 2×O(3333) +O(90000) +O(90000) ∼ O(2× 105). (5.31)

This cost is approximately only 20% of the cost from direct BEM (O(N2 = 106)). If the

number of boundary elements increases to N = 104, then the cost from FMM is only

O(2 × 106) and it is only 2% of the cost from the direct BEM solver (O(N2 = 108)).

Considering the number of the iterations to solve the system of linear equations, the

cost saving can be dramatic both on memory and time cost for computing matrix-vector

products. This is the advantage of the fast multipole method. The above ratio can be

ideal. To compare the cost with the realistic problem, we made the comparison with the

single body protein calculation solver to calculate the binding affinities of mutant protein

complexes. Figure 5.5 shows the comparison of memory demand between BEM direct

solver and FMM-BEM solver for the calculations of electrostatic energy contribution

to the binding affinity of BPTI-trypsin complex. With the implementation of FMM

in our model, our electrostatic free energy solver only takes about 1GB of memory,

significantly smaller than BEM direct solver which demands more than 7GB using about

15, 000 surface elements. The BEM solver follows O(N2) algorithm whereas the FMM

solver only does O(N logN) algorithm. This trend also can be applied to expect the

time consuming. Because of the reduced number of problems by the residual model

and the reduced computational cost by the implementation of FMM algorithm, our

model is able to calculate the binding free energy of the mutations on three protein-

protein complexes efficiently. The comparison with the double body calculation solvers

to compute effective interaction energy calculations of the two proteins in chapter 3 shows

that the implementation of FMM to two body BEM reduces a lot more computational

cost from O((2N)2) with direct BEM solver to O(N) and O(2N) with double-tree and

single-tree FMM respectively (Figure 3.6).
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Figure 5.5 The comparison of the memory demand between BEM direct
solver and FMM solver for calculations of the electrostatic energy
contribution to the binding of BPTI-trypsin complex. The red
square boxes represent memory demands from the direct BEM
solver and the dashed line is its curve fitting whose power is
1.973. The black spheres indicate the FMM solver data and the
blue solid line is its curve fitting with power 1.00 with maximum
level of tree = 6.
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Figure 5.6 The changes of the number of iterations to solve the system of
linear equations after applying the Initial Guess method. After
applying the previous solution and angle correction the number
of iterations to get a solution within the designated tolerance is
significantly reduced (Song and Chew, 1998).

5.5 The Initial Guess improvement

For the iterative solution of the electrostatic interaction energy calculations, the num-

ber of systems of linear integral equations is only one. But for the iterative solutions of

the van der Waals interaction energy calculations, the number of linear systems depends

on the number of amino acid residues in proteins. Also in each residue we need to solve

the linear system for each x, y, z coordinate to build up the reaction field matrix. For ex-

ample, the number of linear systems for BPTI protein is 58(Residues)×3(x, y, z) = 174,

that means we need to consider more improvement of our iterative solver with FMM

algorithm because of the large number of linear system problems even though this FMM

reduces the computational cost and time consuming.

According to Song and Chew, for their iterative solutions, a small change in the

incident angle corresponds to a small change in the current solution (Song and Chew,
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1998). Using the current solution from the previous angle as an initial guess for the next

solution from the next angle can improve the performance of the iterative solution by

reducing the number of iterations. Two steps of initial guess were applied in their study.

Firstly, they use the previous solution as an initial guess for the next solution.

J2(r) = J1(r) (5.32)

And the phase correction based on the direction of incident angles from the previous

angle k1 to the next angle k2 is applied with the general observation that the phase

corrected solution, J̃(r), changes more slowly than J(r) when ki changes.

J̃(r) = J(r)e−iki·r (5.33)

So J1(r)e−ik1·re−ik2·r can be an initial guess for the next solution J2(r). This technique

significantly reduces the number of iterations. In their study, applying the first initial

guess from the previous solution only shows the minor improvement of the number of

iterations, but the second method with the phase correction significantly reduces the

number of iterations (see Figure 5.6).

This initial guess method is also applied to our iterative solver. The first approach

in Eq. (5.32) is used to improve the number of iterations in the electrostatic interaction

calculations. Even though this linear system yields only one solution, the initial guess

based on the right-hand-side (RHS) vector reduces the number of iteration from 52 to

39 in BPTI protein calculations, for example.

For the iterative solutions of van der Waals interaction energy calculations, the second

method, the phase correction, is used to improve the number of iterations in each linear

system in addition to the RHS vector initial guess method as following,

J2(r2) = J1(r1)∇2
1

|r2 − r1|
. (5.34)

And the number of iterations to calculate the van des Waals interactions between two
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BPTI proteins is reduced from 52 to 39 after applying the RHS initial guess) and finally

to 36 after applying Eq. (5.34).
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CHAPTER 6. Final remarks

In this thesis, the author has investigated applications of the Fast Multipole Method

(FMM) to the Boundary Element Method (BEM) for calculations of interaction energies

between protein molecules in three dimension with both electrostatic energy contribution

and van der Waals energy contribution. The results obtained in this thesis are proven

to make the conclusion that the first step is gradually taken toward to more practical

applications of protein-protein interactions.

The results obtained in this thesis are summarized as follows,

1. In chapter 2, implementation of the FMM to the BEM has been successfully applied

to solve the linearized Poisson-Boltzmann equation that is the basis to calculate

the electrostatic energy contribution and the van der Waals energy contribution to

investigate binding affinity calculations of protein complexes. We built a residual

model with the FMM-BEM of a single protein to describe a protein at a residue

level. The procedure to generate suitable structures of protein complexes with

single mutations on the binding site are indicated and validated with existing

experimental PDB structures.

2. In chapter 3, the residual model with the FMM-BEM has been extended to com-

pute effective interaction energies between two protein molecules with the single-

tree and the double-tree FMM-BEM strategies. An anisotropic patch model based

on a number of surface elements on two proteins was introduced to represent rela-

tive orientations between two protein molecules. With the successful applications
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of the FMM-BEM to the effective interactions between two proteins and the re-

duced number of pair interactions from the anisotropic patch model, we are able

to calculate the second virial coefficients of proteins in various solution conditions.

3. In chapter 4, the model based on the anisotropic patch model has been applied

to calculations of pair interaction potentials between two protein as a first step to

calculate a phase diagram of a protein. The pair potentials from many different

orientations of two proteins are interpolated from pair potentials of six pairs chosen

from surface patches.

4. In chapter 5, implementation of the FMM to the BEM to build solutions for PB

based problems is described and proven to show how much computational cost it

can save by introducing the FMM algorithm to the realistic problem based on the

BEM to compute interaction energies between protein molecules.

The author has plans to do followings as the future work,

1. Apply the recent FMM algorithm to our FMM-BEM solvers to reduce further

computational cost. There are still possibilities to save the cost especially the

time consumption to solve the system of linear equations. We can save a lot more

cost for the van der Waals interaction energy calculation because we need to solve

a number of linear systems based on the number of residues in proteins with the

residual model.

2. Design a model to reduce the number of pair interactions with the anisotropic patch

model based on the surface elements. Reduced number of unknowns enables us to

investigate a phase behavior of a protein and to guide the optimal crystallization

condition to study the structure of a protein.

3. Apply the FMM-BEM to large-scale problems of interactions between large size

proteins in which the number of surface elements easily exceed the order of 106 ∼
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108 using various new techniques of the FMM, libraries for the parallel imple-

mentation such as the Message Passing Interface(MPI) or the Parallel Virtual

Machine(PVM).

By implementation of the FMM to the BEM we are able to build efficient models to

compute interaction energies between particles in a protein level for both electrostatic

interaction energy and van der Waals interaction energy. The author hopes that the

FMM-BEM solver for protein-protein interactions become a practical solver to investi-

gate many aspects of protein-protein interactions and finally to be useful in search of

optimal solution conditions of the protein crystallization.
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APPENDIX A. The analytic expression of the electrostatic

interaction free energy

A.1 Electrostatic interaction free energy between two

charged spherical particles

In order to validate our boundary element solvers either based on the direct solver

or the fast multipole method, we derived the analytic solution for the basic model, two

charged identical spheres in electrolyte solution. We follow the approach (Carnie and

Chan, 1993) with linearized Poisson-Boltzmann model by adding a charge on the center

of each sphere. In the linearized Poisson-Boltzmann model, the electrostatic potential

ψ satisfies the following equations.

∇2ψ = κ2ψ outside the sphere

= − qiδ(r−ri)
ε1

inside the sphere, (A.1)

where κ is the inverse Debye screening length of the electrolyte solution and qi is the

charge located in the center of each sphere i and ε1 is the dielectric constant inside

the sphere. And the solution of Eq. refpb1 in the electrolyte solution(outside of the

spheres) (Glendinning and Russel, 1982) can be given as the following form and the

coordinate system of the two sphere particles are shown on Figure A.1.
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Figure A.1 Schematic diagram of the coordinate system of two sphere prob-
lem. a is the radius of sphere, R is the center-to-center distance
and r1, θ1, r1 and θ1 are the coordinate system from sphere 1
and 2 respectively (Carnie and Chan, 1993). The charge q is
located on the center of each sphere.

ψ =
∞∑
n=0

an{kn(κr1)Pn(cos θ1)

+
∞∑
m=0

(2m+ 1)Bnmim(κr1)Pn(cos θ1)}, (A.2)

where

Bnm =
∞∑
ν=0

Aνnmkn+m−2ν(κR) (A.3)

Aνnm =

Γ(n− ν + 1/2)Γ(m− ν + 1/2)Γ(ν + 1/2)

×(n+m− ν)!(n+m− 2ν + 1/2)

πΓ(m+ n− ν + 3/2)(n− ν)!(m− ν)!ν!
, (A.4)

and in(x), kn(x) are the modified spherical Bessel functions of the first and third kind

respectively (Abramowitz and Stegun, 1964), R is the center-to-center distace between

the two spheres and Γ(z) is the gamma function. Also the solution of Eq. (A.1) inside

the spheres has the general form,

ϕ =
∞∑
n=0

bnr
nPn(cos θ) +

q

r
, (A.5)
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where r = r1 or r2 and θ = θ1 or θ2 by symmetry and q = q1 or q2 and ϕ = ϕ1 or ϕ = ϕ2

either inside of each sphere. The unknown coefficients an and bn can be determined by

applying the boundary conditions of the potential functions given by Eq. (A.2) and Eq.

(A.5) on across the surface of sphere at r1 = a,

ψ|r1=a = ϕ|r1=a

ε2
∂ψ

∂r

∣∣∣∣
r1=a

= ε1
∂ϕ

∂r

∣∣∣∣
r1=a

, (A.6)

where ε1 is the dielectric constant inside the sphere and ε2 is the dielectric constant of

the solution, and ε = ε2/ε1 will be used for further derivation. By applying the boundary

conditions Eq. (A.6) on Eq. (A.2) and Eq. (A.5) we evaluate the coefficient bn and the

potential function inside the sphere is,

ϕ =
∞∑
n=0

[(r
a

)n
an{kn(κa)

+
∞∑
m=0

(2m+ 1)Bnmim(κa)}Pn(cosθ) −q
a

(r
a

)n]
+
q

r
. (A.7)

In order to evaluate the electrostatic solvation energy on the charge position, r → 0

limit makes only n = 0 term survived and the self-energy term also goes out.

ϕ(r → 0) = a0{k0{κa) +
∞∑
m=0

(2m+ 1)B0mim(κa)} − q

a
. (A.8)

To find another unknown coefficient a0, we only need the m = 0 term after applying

the boundary condition Eq. (A.6) with n = 0 for solvation energy calculation.

a0 = −q
a

1

εκa

1

k′0(κa) +B00i′0(κa)
(A.9)

So the potential on the charge center is written as,

ϕ(r → 0) = −q
a

1

εκa

k0(κa) +B00i0(κa)

k′0(κa) +B00i′0(κa)
− q

a
, (A.10)

where B00 =
∞∑
ν=0

Aν00k−2ν(κR) = k0(κR).
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We validate this result comparing with the exact analytic expression of solvation

energy of a single sphere in which the charge is located on the origin of sphere. This is

done by using the infinite separation of the two spheres(R→∞). If R→∞, then

B00(R→∞)

{
= k0(κR) =

π

2

e−κR

κR

}
→ 0. (A.11)

So the solvation energy W is given as,

W (R→∞) =
1

2
qϕ

=
1

2

{
−q

2

a

1

εκa

k0(κa)

k′0(κa)
− q2

a

}
=

1

2

q2

a

1− (1 + κa)ε

(1 + κa)ε
. (A.12)

This result is exactly equal to the analytic solution for the solvation of the single

charged sphere. To calculate the electrostatic interaction free energy of the two identical

spheres, we need to subtract the interaction potential of the infinitely separated spheres

from the potential between two spheres with finite distance, that is, ϕAB = ϕ(R)−ϕ(R→

∞) where A and B represent two spheres.

ϕAB = ϕ(R)− ϕ(R→∞)

= −q
a

1

εκa

{
k0(κa) + k0(κR)i0(κa)

k′0(κa) + k0(κR)i′0(κa)
+ εκa

}
. (A.13)

We used this expression to validate our solution based on the fast multipole method.
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